Oilseed rape (Brassica napus L.) was formed~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent A n and C n subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.T he Brassicaceae are a large eudicot family (1) and include the model plant Arabidopsis thaliana. Brassicas have a propensity for genome duplications ( Fig. 1) and genome mergers (2). They are major contributors to the human diet and were among the earliest cultigens (3).B. napus (genome A n A n C n C n ) was formed by recent allopolyploidy between ancestors of B. oleracea (Mediterranean cabbage, genome C o C o ) and B. rapa (Asian cabbage or turnip, genome A r A r ) and is polyphyletic (2, 4), with spontaneous formation regarded by Darwin as an example of unconscious selection (5). Cultivation began in Europe during the Middle Ages and spread worldwide. Diversifying selection gave rise to oilseed rape (canola), rutabaga, fodder rape, and kale morphotypes grown for oil, fodder, and food (4, 6).The homozygous B. napus genome of European winter oilseed cultivar 'Darmor-bzh' was assembled with long-read [>700 base pairs (bp)] 454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequence (tables S1 to S5 and figs. S1 to S3) (7). Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence. A final assembly of 849.7 Mb was obtained with SOAP (8) and Newbler (Roche), with 89% nongapped sequence (tables S2 and S3). Unique mapping of 5× nonassembled 454 sequences from B. rapa ('Chiifu') or B. oleracea (' TO1000') assigned most of the 20,702 B. napus scaffolds to either the A n (8294) or the C n (9984) subgenomes (tables S4 and S5 and fig. S3). The assembly covers~79% of the 1130-Mb genome and includes 95.6% of Brassica expressed sequence tags (ESTs) (7). A single-nucleotide polymorphism (SNP) map (tables S6 to S9 and figs. S4 to S8) genetically anchored 712.3 Mb (84%) of the genome assembly, yielding pseudomolecules for the 19 chromosomes (table S10).The assembled C n subgenome (525.8 Mb) is larger than the A n subgenome (314.2 Mb), consistent with the relative sizes of the assembled C o genome of B. oleracea (540 Mb, 85% of thẽ 630-Mb genome) and the A r genome of B. rapa (312 Mb, 59% of the~530-Mb genome) (9-11). The B. napus assembly contains 34.8% transposable elements (TEs), less than the 40% estimated from raw reads (table...
The chromosome of Yersinia enterocolitica encodes an enterotoxin called Yst. We analysed transcription of chromosomal yst'--luxAB and plasmid-borne yst'--lacZ operon fusions and we observed that regulation of yst expression occurs at transcriptional level. In a wild-type strain, yst was transcribed from at least two major promoters. yst transcription reached a maximum at the entry to the stationary phase and significantly varied in different Y. enterocolitica strains. In some strains, it gradually decreased during the course of our work, suggesting the existence of a mechanism switching the expression of yst to a silent state. Changes in the status of bacterial host factors rather than modifications in the yst gene are responsible for this silencing. Negative regulator YmoA participates in yst silencing and temperature regulation of yst. YmoA was also required for proper growth-phase regulation of yst, although it is not the only factor involved in this regulation. Physico-chemical parameters of the environment play an important role in yst transcription. In usual culture media (e.g. tryptic soy broth), the enterotoxin gene was transcribed only at temperatures below 30 degrees C, which argued against the role of Yst in a prolonged diarrhoea at body temperatures. However, yst transcription could be induced at 37 degrees C by increasing osmolarity and pH to the values normally present in the ileum lumen. This finding reconciles the observations concerning yst expression in a host environment and in bacterial cultures, thus supporting the idea that enterotoxin Yst is a virulence factor of Y. enterocolitica.
Brachypodium hybridum (2n = 30) is a natural allopolyploid with highly divergent sub-genomes derived from two extant diploid species, B. distachyon (2n = 10) and B. stacei (2n = 20) that differ in chromosome evolution and number. We created synthetic B. hybridum allotetraploids by hybridizing various lines of B. distachyon and B. stacei. The initial amphihaploid F1 interspecific hybrids were obtained at low frequencies when B. distachyon was used as the maternal parent (0.15% or 0.245% depending on the line used) and were sterile. No hybrids were obtained from reciprocal crosses or when autotetraploids of the parental species were crossed. Colchicine treatment was used to double the genome of the F1 amphihaploid lines leading to allotetraploids. The genome-doubled F1 plants produced a few S1 (first selfed generation) seeds after self-pollination. S1 plants from one parental combination (Bd3-1×Bsta5) were fertile and gave rise to further generations whereas those of another parental combination (Bd21×ABR114) were sterile, illustrating the importance of the parental lineages crossed. The synthetic allotetraploids were stable and resembled the natural B. hybridum at the phenotypic, cytogenetic and genomic levels. The successful creation of synthetic B. hybridum offers the possibility to study changes in genome structure and regulation at the earliest stages of allopolyploid formation in comparison with the parental species and natural B. hybridum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.