We establish new results concerning projectors on max-plus spaces, as well as
separating half-spaces, and derive an explicit formula for the distance in
Hilbert's projective metric between a point and a half-space over the max-plus
semiring, as well as explicit descriptions of the set of minimizers. As a
consequence, we obtain a cyclic projection type algorithm to solve systems of
max-plus linear inequalities.Comment: 42 pages and 4 figure
We develop a new technique for calculating the first cohomology of certain classes of actions of higher-rank abelian groups (${\mathbb Z}^k$ and ${\mathbb R}^k$, $k\ge 2$) with values in a linear Lie group. In this paper we consider the discrete-time case. Our results apply to cocycles of different regularity, from Hölder to smooth and real-analytic. The main conclusion is that the corresponding cohomology trivializes, i.e. that any cocycle from a given class is cohomologous to a constant cocycle. The principal novel feature of our method is its geometric character; no global information about the action based on harmonic analysis is used. The method can be developed to apply to cocycles with values in certain infinite dimensional groups and to rigidity problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.