SummaryAcetyl-CoA carboxylase (ACCase) catalyses the carboxylation of acetyl-CoA, forming malonyl-CoA, which is used in the plastid for fatty acid synthesis and in the cytosol in various biosynthetic pathways including fatty acid elongation. In Arabidopsis thaliana, ACC1 and ACC2, two genes located in a tandem repeat within a 25-kbp genomic region near the centromere of chromosome 1, encode two multifunctional ACCase isoforms. Both genes, ACC1 and ACC2, appear to be ubiquitously expressed, but little is known about their respective function and importance. Here, we report the isolation and characterisation of two allelic mutants disrupted in the ACC1 gene. Both acc1-1 and acc1-2 mutations are recessive and embryo lethal. Embryo morphogenesis is impaired and both alleles lead to cucumber-like structures lacking in cotyledons, while the shortened hypocotyl and root exhibit a normal radial pattern organisation of the body axis. In this abnormal embryo, the maturation process still occurs. Storage proteins accumulate normally, while triacylglycerides (TAG) are synthesised at a lower concentration than in the wild-type seed. However, these TAG are totally devoid of very long chain fatty acids (VLCFA) and consequently enriched in C18:1, like all lipid fractions analysed in the mutant seed. These data demonstrate, in planta, the role of ACCase 1 in VLCFA elongation. Furthermore, this multifunctional enzyme also plays an unexpected and central function in embryo morphogenesis, especially in apical meristem development.
RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.
Flavonols are plant-specific molecules that are required for pollen germination in maize and petunia. They exist in planta as both the aglycone and glycosyl conjugates. We identified a flavonol 3-O-galactosyltransferase (F3GalTase) that is expressed exclusively in the male gametophyte and controls the formation of a pollen-specific class of glycosylated flavonols. Thus an essential step to understanding flavonol-induced germination is the characterization of F3GalTase. Amino acid sequences of three peptide fragments of F3GalTase purified from petunia pollen were used to isolate a fulllength cDNA clone. RNA gel blot analysis and enzyme assays confirmed that F3GalTase expression is restricted to pollen. Heterologous expression of the F3GalTase cDNA in Escherichia coli yielded active recombinant enzyme (rF3GalTase) which had the identical substrate specificity as the native enzyme. Unlike the relatively nonspecific substrate usage of flavonoid glycosyltransferases from sporophytic tissues, F3GalTase uses only UDP-galactose and flavonols to catalyze the formation of flavonol 3-O-galactosides. Kinetic analysis showed that the k cat /K m values of rF3GalTase, using kaempferol and quercetin as substrates, approaches that of a catalytically perfect enzyme. rF3GalTase catalyzes the reverse reaction, generation of flavonols from UDP and flavonol 3-Ogalactosides, almost as efficiently as the forward reaction. The biochemical characteristics of F3GalTase are discussed in the context of a role in flavonol-induced pollen germination.
Pentatricopeptide repeat (PPR) proteins are members of one of the largest nucleus-encoded protein families in plants. Here, we describe the previously uncharacterized maize (Zea mays) PPR gene, MPPR6, which was isolated from a Mutator-induced collection of maize kernel mutants by a cDNA-based forward genetic approach. Identification of a second mutant allele and cosegregation analysis confirmed correlation with the mutant phenotype. Histological investigations revealed that the mutation coincides with abnormities in the transfer cell layer, retardation of embryo development, and a considerable reduction of starch level. The function of MPPR6 is conserved across a wide phylogenetic distance as revealed by heterologous complementation of the Arabidopsis thaliana mutant in the orthologous APPR6 gene. MPPR6 appeared to be exclusively present in mitochondria. RNA coimmunoprecipitation and in vitro binding studies revealed a specific physical interaction of MPPR6 with the 59 untranslated region of ribosomal protein S3 (rps3) mRNA. Mapping of transcript termini showed specifically extended rps3 59 ends in the mppr6 mutant. Considerable reduction of mitochondrial translation was observed, indicating loss of RPS3 function. This is consistent with the appearance of truncated RPS3 protein lacking the N terminus in mppr6. Our results suggest that MPPR6 is directly involved in 59 maturation and translation initiation of rps3 mRNA.
Petunia (Petunia hybrida) pollen requires flavonols (Fl) to germinate. Adding kaempferol to Fl-deficient pollen causes rapid and synchronous germination and tube outgrowth. We exploited this system to identify genes responsive to Fls and to examine the changes in gene expression that occur during the first 0.5 h of pollen germination. We used a subtracted library and differential screening to identify 22 petunia germinating pollen clones. All but two were expressed exclusively in pollen and half of the clones were rare or low abundance cDNAs. RNA gel-blot analysis showed that the steady-state transcript levels of all the clones were increased in response to kaempferol. The sequences showing the greatest response to kaempferol encode proteins that have regulatory or signaling functions and include S/D4, a leucine-rich repeat protein, S/D1, a LIM-domain protein, and D14, a putative Zn finger protein with a heme-binding site. Eight of the clones were novel including S/D10, a cDNA only expressed very late in pollen development and highly up-regulated during the first 0.5 h of germination. The translation product of the S/D3 cDNA shares some features with a neuropeptide that regulates guidance and growth in the tips of extending axons. This study confirmed that the bulk of pollen mRNA accumulates well before germination, but that specific sequences are transcribed during the earliest moments of Fl-induced pollen germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.