The present data support the hypothesis that CB and CB receptors work in concert with opposing functions to modulate certain addiction-related effects of cocaine.
Maternal immune activation (MIA) during pregnancy in rodents increases the risk of the offspring to develop schizophrenia-related behaviors, suggesting a relationship between the immune system and the brain development. Here we tested the hypothesis that MIA induced by the viral mimetic polyinosinic-polycytidylic acid (poly I:C) in early or late gestation of mice leads to behavioral and neuroanatomical disorders in the adulthood. On gestational days (GDs) 9 or 17 pregnant dams were treated with poly I:C or saline via intravenous route and the offspring behaviors were measured during adulthood. Considering the progressive structural neuroanatomical alterations in the brain of individuals with schizophrenia, we used magnetic resonance imaging (MRI) to perform brain morphometric analysis of the offspring aged one year. MIA on GD9 or GD17 led to increased basal locomotor activity, enhanced motor responses to ketamine, a psychotomimetic drug, and reduced time spent in the center of the arena, suggesting an increased anxiety-like behavior. In addition, MIA on GD17 reduced glucose preference in the offspring. None of the treatments altered the relative volume of the lateral ventricles. However, a decrease in brain volume, especially for posterior structures, was observed for one-year-old animals treated with poly I:C compared with control groups. Thus, activation of the maternal immune system at different GDs lead to neuroanatomical and behavioral alterations possibly related to the positive and negative symptoms of schizophrenia. These results provide insights on neuroimmunonological and neurodevelopmental aspects of certain psychopathologies, such as schizophrenia.
Background: Zika virus (ZIKV) infection during pregnancy may cause major congenital defects, including microcephaly, ocular, articular and muscle abnormalities, which are collectively defined as Congenital Zika Syndrome. Here, we performed an in-depth characterization of the effects of congenital ZIKV infection (CZI) in immunocompetent mice. Methods: Pregnant dams were inoculated with ZIKV on embryonic day 5.5 in the presence or absence of a sub-neutralizing dose of a pan-flavivirus monoclonal antibody (4G2) to evaluate the potential role of antibodydependent enhancement phenomenon (ADE) during short and long outcomes of CZI. Findings: ZIKV infection induced maternal immune activation (MIA), which was associated with occurrence of foetal abnormalities and death. Therapeutic administration of AH-D antiviral peptide during the early stages of pregnancy prevented ZIKV replication and death of offspring. In the post-natal period, CZI was associated with a decrease in whole brain volume, ophthalmologic abnormalities, changes in testicular morphology, and disruption in bone microarchitecture. Some alterations were enhanced in the presence of 4G2 antibody. Interpretation: Our results reveal that early maternal ZIKV infection causes several birth defects in immunocompetent mice, which can be potentiated by ADE phenomenon and are associated with MIA. Additionally, antiviral treatment with AH-D peptide may be beneficial during early maternal ZIKV infection.
The monoamine stabilizer (3S)-3-[3-(methenesulfonyl)phenyl]-1-propylpiperidine hidrochloride [(-)-OSU6162] is a promising compound for the treatment of neurological and psychiatric disorders, such as schizophrenia. Here, we tested the hypothesis that (-)-OSU6162 prevents hyperlocomotion and sensorimotor deficits in prepulse inhibition of the startle response (PPI) induced by psychomimetic drugs. Male Swiss mice received injections of (-)-OSU6162 (1, 3, 10, or 30 mg/kg), and their motor responses were investigated in the open field and in the catalepsy tests, which predicts liability to induce sedation and extrapyramidal side effects, respectively. Next, in independent experiments, this compound was evaluated for its efficacy to prevent hyperlocomotion induced by cocaine (10 mg/kg; dopamine transporter inhibitor) or ketamine (60 mg/kg; glutamate NMDA channel blocker) in the open field. Finally, we tested if (-)-OSU6162 prevents PPI disruption induced by MK-801 (0.5 mg/kg; glutamate NMDA channel blocker). (-)-OSU6162 induced neither locomotion impairment nor catalepsy. This compound prevented cocaine-induced hyperlocomotion at the doses of 10 and 30 mg/kg and ketamine-induced hyperlocomotion at the doses of 1 and 3 mg/kg. In the sensorimotor test, (-)-OSU6162 failed to reverse MK-801-induced PPI deficits. The dopamine stabilizer (-)-OSU6162 prevents the hyperactivity induced by dopaminergic and anti-glutamatergic drugs at doses that preserve motor functions, although it failed in the PPI test. Its therapeutic potential for specific symptoms of schizophrenia warrants further investigation in both preclinical and clinical studies.
Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.