Cassava, which produces edible starchy roots, is an important staple food for hundreds of millions of people in the tropics. Breeding of cassava is hampered by its poor flower production, flower abortion, and lack of reproductive prolificacy. The current work determined that ethylene signalling affects floral development in cassava and that the anti-ethylene plant growth regulator silver thiosulfate (STS) mitigates the effects of ethylene on flower development. STS did not affect the timing of flower initiation, but improved early inflorescence and flower development as well as flower longevity such that flower numbers were increased. STS did not affect shoot and storage root growth. Studies of silver accumulation and treatment localization support the hypothesis that the beneficial effects of STS are confined to tissues of the shoot apex. The most effective timing of application was before inflorescence appearance extending to post-flower appearance. Based on this work a recommended protocol for STS use was developed. This work has the potential to improve methods for enhancing cassava flower development in breeding nurseries and thereby synchronize flowering of desired parents and enable the production of abundant progeny of desired crosses.
Early characterization of genotypes, through the previous assessment of physiological quality of their seeds and their enzymatic systems, can provide parameters capable of aiding in the selection of new maize cultivars tolerant to water stress. Thus, this study was aimed at assessing seed performance of five different maize lines subjected to four different water stress levels. The physiological quality of seeds germinated under the osmotic potentials of 0.0, -0.3, -0.6 and -0.9 MPa was assessed by germination test, number of strong normal seedlings and T50, as well as by the expression of the isozymes superoxide dismutase (SOD), catalase (CAT), glutamate oxaloacetate transaminase (GOT), esterase (EST), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), and of heat-resistant proteins. The osmotic potential of -0.9 MPa affected the physiological quality and vigor of seeds of all maize lines assessed. The highest values for the germination percent, in the lowest osmotic potentials assessed, were found in the seeds of line 63. However, seeds of line 91 were superior in regard to vigor. Increased expression of the enzymes SOD and CAT, considered as enzymes of the antioxidant system, was observed in seeds of lines 44 and 91. Thus, line 91 was considered as promising for tolerance to water stress.
Early characterization of maize (Zea mays L.) genotypes, as well as the study of the genetic control of traits associated with water deficit tolerance, can provide information to guide breeders in the selection of cultivars adapted to drought environments. The aim of this study was to estimate heterosis and combining ability of maize genotypes under water stress during seed germination and seedling emergence. Four inbred lines previously characterized as water stress tolerant were crossed with four nontolerant lines in partial diallel scheme to obtain 16 hybrids and 16 reciprocals. Seeds were germinated in trays with sand in two environments, with and without water stress, with field capacity adjusted to 10 and 70% of humidity. The traits evaluated were seedling emergence, emergence speed index, shoot length, root length, number of seminal roots, and shoot and root dry weights. The heterosis effect, general combining ability, specific combining ability, and reciprocal effects were estimated for each trait using a partial diallel mixed model. The nonadditive effects were more important, and heterosis was observed in all cases, more expressively for root traits. The reciprocal effects were significant, highlighting the importance of the correct choice of the female parent to obtain maize hybrids tolerant to water stress.
ABSTRACT. Low water availability is one of the factors that limit agricultural crop development, and hence the development of genotypes with increased water stress tolerance is a challenge in plant breeding programs. Heat-resistant proteins have been widely studied, and are reported to participate in various developmental processes and to accumulate in response to stress. This study aimed to evaluate heat-resistant protein expression under water stress conditions during the germination of maize seed inbreed lines differing in their water stress tolerance. Maize seed lines 91 and 64 were soaked in 0, -0.3, -0.6, and -0.9 MPa water potential for 0, 6, 12, 18, and 24 h. Line 91 is considered more water stress-tolerant than line 64. The analysis of heat-resistant protein expression was made by gel electrophoresis and spectrophotometry. In general, higher expression of heat-resistant proteins was observed in seeds from line 64 subjected to shorter soaking periods and lower water potentials. However, in the water stress-tolerant line 91, a higher expression was observed in seeds that were subjected to -0.3 and -0.6 MPa water potentials. In the absence of water stress, heat-resistant protein expression was reduced with increasing soaking period. Thus, there was a difference in heat-resistant protein expression among the seed lines differing in water stress tolerance. Increased heatresistant protein expression was observed in seeds from line 91 when subjected to water stress conditions for longer soaking periods.
ABSTRACT. The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of highquality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 12 (3): 2618-2624 (2013 Gene expression of lignin biosynthesis in soybean seeds 2619 final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.