This paper concerns the study of a general minimal time problem with a convex constant dynamics and a closed target set in Banach spaces. We pay the main attention to deriving sufficient conditions for the major well-posedness properties that include the existence and uniqueness of optimal solutions as well as certain regularity of the optimal value function with respect to state variables. Most of the results obtained are new even in finite-dimensional spaces. Our approach is based on advanced tools of variational analysis and generalized differentiation.
Abstract. We present a research program designed by A. Bressan and some partial results related to it. First, we construct a probability measure supported on the space of solutions to a planar differential inclusion, where the right-hand side is a Lipschitz continuous segment. Such measure assigns probability one to solutions having derivatives a.e. equal to one of the endpoints of the segment. Second, for a class of planar differential inclusions with H枚lder continuous right-hand side F , we prove existence of solutions whose derivatives are exposed points of F . Finally, we complete the research program if the right-hand side of the differential inclusion does not depend on the state and prove a result on the Lipschitz continuity of an auxiliary map. The proofs rely on basic properties of Brownian motion.
We consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.