Membrane formation via the combination of self-assembly and the non-solvent induced phase separation (NIPS) process of diblock copolymers is investigated. Several polystyrene-blockpoly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers with different molecular weights and weight percentages of both blocks are tested under different parameters, leading to membrane surfaces with uniform pores of approximately 20-70 nm diameter. The average pore diameter is proved to be adjustable by changing the total molar mass of the block copolymer. The solution composition is an additional parameter controlling the structure formation. The purpose was to explore the limits of the membrane structure formation and find upper and lower limits since the molecular weight and the composition of this diblock cpolymer. Scanning electron microscopy (SEM) is used to image the surface morphology and the homogeneity of the pore sizes. Primary results of water flux and retention are presented.
Double stimuli‐responsive membranes are prepared by modification of pH‐sensitive integral asymmetric polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes with temperature‐responsive poly(N‐isopropylacrylamide) (pNIPAM) by a surface linking reaction. PS‐b‐P4VP membranes are first functionalized with a mild mussel‐inspired polydopamine coating and then reacted via Michael addition with an amine‐terminated pNIPAM‐NH2 under slightly basic conditions. The membranes are thoroughly characterized by nuclear magnetic resonance (1H‐NMR), Fourier transform infrared spectroscopy and X‐ray‐induced photoelectron spectroscopy. Additionally dynamic contact angle measurements are performed comparing the sinking rate of water droplets at different temperatures. The pH‐ and thermo‐double sensitivities of the modified membranes are proven by determining the water flux under different temperature and pH conditions.
The purpose of this work is the structural analysis of graphene oxide (GO) and by means of a new structural model to answer the questions arising from the Lerf–Klinowski and the Lee structural models. Surface functional groups of GO layers and the oxidative debris (OD) stacked on them were investigated after OD was extracted. Analysis was performed successfully using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy (SSNMR), standardized Boehm potentiometric titration analysis, elemental analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that graphene oxide layers, as well as oxidative debris contain different functional groups such as phenolic –OH, ketone, lactone, carboxyl, quinone and epoxy. Based on these results, a new structural model for GO layers is proposed, which covers all spectroscopic data and explains the presence of the other oxygen functionalities besides carboxyl, phenolic –OH and epoxy groups.
Nanocomposite membranes were prepared by incorporation of commercial poly(ethylene glycol) functionalized polyoctahedral oligomeric silsesquioxanes (PEG-POSS) in two grades of poly(ether-block-amide) namely PEBAX ® MH 1657 and PEBAX ® 2533. Single gas permeabilities of N 2 , O 2 , CH 4 , H 2 , and CO 2 were measured using the time-lag method. CO 2 permeability increased two fold after incorporation of 30 wt% PEG-POSS in PEBAX ® MH 1657, while the selectivity was not significantly affected at 30 °C. Simultaneous enhancement in permeability and selectivity was observed up to 30 wt% loading of PEG-POSS in PEBAX ® 2533 at 30 °C. The effect of temperature upon CO 2 permeability and CO 2 selectivity over N 2 , O 2 , CH 4 and H 2 was studied between 30 ºC to 70 °C. Substantial influence upon the thermal transition of the polyether domain of both polymers was observed due to incorporation of PEG-POSS by differential scanning calorimetry (DSC). Atomic force microscopy was used to evaluate the impact of 30 wt% PEG-POSS loading upon the surface topography of both investigated grades of PEBAX ®. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to study the membrane morphology and the distribution of the nanofillers (PEG-POSS) in PEBAX ® membranes.
The formation of an integral asymmetric membrane composed of a cylinder‐forming polystyrene‐block‐poly(2‐vinylpyridine) on a nonwoven by using solvent casting followed by solvent/nonsolvent exchange (phase inversion) is reported for the first time. The influence of parameters such as solvent composition, evaporation time of the solution‐cast block copolymer film before phase inversion, and immersion bath temperature is demonstrated. The optimized membranes are characterized in terms of stimuli‐responsive water flux properties. The morphologies of the membranes as well as of the bulk of the block copolymer are imaged by scanning force microscopy, scanning electron microscopy, and transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.