Down syndrome (DS) is the most common genetic disorder associated with mental retardation (MR).It is believed that many of the phenotypic features of DS stem from enhanced expression of a set of genes located within the triplicated region on chromosome 21. Among those genes is DYRK1A encoding dual -specificity proline-directed serine/treonine kinase, which, as documented by animal studies, can potentially contribute to cognitive deficits in DS. Whether this contribution can be exerted through elevated levels of DYRK1A protein in the brain of DS subjects was the main goal of the present study. The levels of DYRK1A protein were measured by Western blotting in six brain structures that included cerebral and cerebellar cortices and white matter. The study involved large cohorts of DS subjects and age-matched controls representing infants and adults of different age, gender and ethnicity. Trisomic Ts65Dn mice, an animal model of DS, were also included in the study. Both in trisomic mice and in DS subjects, the brain levels of DYRK1A protein were increased approximately 1.5-fold, indicating that this protein is overexpressed in gene dosage-dependent manner. The exception was an infant group, in which there was no enhancement suggesting the existence of a developmentally regulated mechanism. We found DYRK1A to be present in every analyzed structure irrespective of age. This widespread occurrence and constitutive expression of DYRK1A in adult brain suggest an important, but diverse from developmental, role played by this kinase in adult central nervous system. It also implies that overexpression of DYRK1A in DS may be potentially relevant to MR status of these individuals during their entire life span. KeywordsMinibrain DYRK1A kinase; Down syndrome (DS); Chromosome 21 trisomy; Down Syndrome Critical Region (DSCR) Down syndrome (DS) is the most frequent genetic cause of mental retardation. It is assumed that many of the phenotypic features of DS stem from enhanced expression of a set of genes Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. [14]. Among genes cloned from this region was a human homologue of the Drosophila minibrain/rat DYRK gene, which encodes a dual-specificity tyrosine phosphorylation-regulated kinase; DYRK1A [11,22,23]. This gene is highly expressed in the brain [12,13,19] and seems to play a role during brain development by regulating neurogenesis and neuronal differentiation [13,23,27]. That it also plays an important role in adult central nervous system was deduced from its expression patterns in the brain [9,16] and the diverse learning and memory d...
The majority of early-onset familial Alzheimer's disease (FAD) is associated with mutations in the presenilin-1 (PS1) gene. We describe a novel Polish PS1 mutation of Pro117Leu, associated with the earliest average age of onset and death so far reported in a PS-linked, FAD kindred. Human kidney 293 and mouse neuroblastoma N2a cells were stably transfected with wild-type and PS1 P117L. There was a significant increase in the amyloid beta42/40 ratio in the N2a P117L PS1 transfected cells compared with N2a transfected with wild-type PS1. What role PS has in the pathogenesis of AD remains to be determined, however, the severity of the clinical picture associated with this PS1 mutation stresses the importance of presenilin.
The gene encoding dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age-associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell-compartment–specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Co-immunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two-dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5–6.5 in the nucleus, 7.2–8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate-affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A, and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment-specific functions of DYRK1A may depend on its phosphorylation pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.