A material containing single-wall carbon nanotubes (SWCNTs) with other carbon species, catalyst residues, and trace element contaminants has been prepared by the National Institute of Standards and Technology for characterization and distribution as Standard Reference Material SRM 2483 Carbon Nanotube Soot. Neutron activation analysis (NAA) and inductively coupled plasma mass spectrometry (ICP-MS) were selected to characterize the elemental composition. Catalyst residues at percentage mass fraction level were determined with independent NAA procedures and a number of trace elements, including selected rare earth elements, were determined with NAA and ICP-MS procedures. The results of the investigated materials agreed well among the NAA and ICP-MS procedures and good agreement of measured values with certified values was found in selected SRMs included in the analyses. Based on this work mass fraction values for catalyst and trace elements were assigned to the candidate SRM.
An improved inductively coupled plasma-optical emission spectrometry (ICP-OES) method has been applied to the determination of Li and A1 mass fractions and the Li/A1 amount-of-substance ratio in representative samples of LiA1O2. This ICP-OES method has uncertainty on the order of 0.2%,(2,3) comparable to the best analytical methods. This method is based on several strategies, which are detailed in this work. The mean measured mass fractions of Li and A1 in eight samples were 0.10151 +/- 0.00016 (+/-0.16%) and 0.41068 +/- 0.00056 (+/-0.14%), and the mean Li/A1 amount-of-substance ratio was 0.9793 +/- 0.0017 (+/-0.17%). The uncertainty is dominated by sample handling and heterogeneity-about a factor of 2 larger than the ICP-OES instrumental uncertainties, which were 0.04% for A1 and 0.07% for Li.
A mathematical formulation for a gravimetric approach to the univariate standard addition method (SAM) is presented that has general applicability for both liquids and solids. Using gravimetry rather than volumetry reduces the preparation time, increases design flexibility, and makes increased accuracy possible. SAM has most often been used with analytes in aqueous solutions that are aspirated into flames or plasmas and determined by absorption, emission, or mass spectrometric techniques. The formulation presented here shows that the method can also be applied to complex matrixes, such as distillate and residual fuel oils, using techniques such as X-ray fluorescence (XRF) or combustion combined with atomic fluorescence or absorption. These techniques, which can be subject to matrix-induced interferences, could realize the same benefits that have been demonstrated for dilute aqueous solutions.
Sulfur in petroleum diesel is typically detected by wavelength dispersive X-ray fluorescence (XRF) spectrometry by comparing the response of the unknown to a linear calibration curve composed of a series of matrix-identical standards. Because biodiesel contains about 11% oxygen by mass and diesel is oxygen-free, the determination of sulfur in biodiesel using petroleum diesel calibrants is predicted to be biased ∼ -16% due to oxygen absorptive attenuation of the X-ray signal. A gravimetric standard addition method (SAM) was hypothesized to overcome this bias because it should be matrix-independent. Samples of both petroleum diesel (SRM 2723a and European Reference Material EF674a) and biodiesel (candidate SRM 2773, NREL 52537, and NREL 52533) were analyzed, comparing the traditional calibration curve method to the gravimetric SAM approach. As expected, no significant difference was found between the two methods when measuring sulfur in petroleum diesel. Sulfur determinations in biodiesel with petroleum diesel calibrants were lower by ∼19% relative to the gravimetric SAM at the 3, 7, and 12 µg/g levels. It is concluded that XRF using gravimetric SAM yields accurate sulfur measurements in biodiesel samples. In addition, the gravimetric SAM approach is insensitive to differences in the C/H ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.