In this work, we study the chiral symmetry breaking in pseudo-quantum electrodynamics in (2 þ 1) dimensions, which is designed to reproduce a Coulomb potential for charged particles on a plane interacting via photons propagating in (3 þ 1) space-time dimensions and would be relevant for applications to condensed-matter systems. Using an ultraviolet cutoff in the momentum integrals, we show that there is a critical dimensionless coupling c ¼ =4 above which there is chiral symmetry breaking. In the case of the theory with N massless fermions, we obtain a critical value of the number of fermion flavors, N c , below which the chiral symmetry breaking occurs. Finally, we discuss the relevance of our results to graphene in the ultimate deep infrared regime where the Fermi velocity of the Dirac fermions approaches the velocity of light.
Photon spheres, surfaces where massless particles are confined in closed orbits, are expected to be common astrophysical structures surrounding ultracompact objects. In this paper a semiclassical treatment of a photon sphere is proposed. We consider the quantum Maxwell field and derive its energy spectra. A thermodynamic approach for the quantum photon sphere is developed and explored. Within this treatment, an expression for the spectral energy density of the emitted radiation is presented. Our results suggest that photon spheres, when thermalized with their environment, have nonusual thermodynamic properties, which could lead to distinct observational signatures.
We analyze the thermodynamics of massless bosonic systems in D-dimensional anti-de Sitter spacetime, considering scalar, electromagnetic, and gravitational fields. Their dynamics are described by Pöschl-Teller effective potentials and quantized in a unified framework, with the determination of the associated energy spectra. From the microscopic description developed, a macroscopic thermodynamic treatment is proposed, where an effective volume in anti-de Sitter geometry is defined and a suitable thermodynamic limit is considered. Partition functions are constructed for the bosonic gases, allowing the determination of several thermodynamic quantities of interest. With the obtained results, general aspects of the thermodynamics are explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.