Although genome-wide association studies (GWASs) for nonsyndromic orofacial clefts have identified multiple strongly associated regions, the causal variants are unknown. To address this, we selected 13 regions from GWASs and other studies, performed targeted sequencing in 1,409 Asian and European trios, and carried out a series of statistical and functional analyses. Within a cluster of strongly associated common variants near NOG, we found that one, rs227727, disrupts enhancer activity. We furthermore identified significant clusters of non-coding rare variants near NTN1 and NOG and found several rare coding variants likely to affect protein function, including four nonsense variants in ARHGAP29. We confirmed 48 de novo mutations and, based on best biological evidence available, chose two of these for functional assays. One mutation in PAX7 disrupted the DNA binding of the encoded transcription factor in an in vitro assay. The second, a non-coding mutation, disrupted the activity of a neural crest enhancer downstream of FGFR2 both in vitro and in vivo. This targeted sequencing study provides strong functional evidence implicating several specific variants as primary contributory risk alleles for nonsyndromic clefting in humans.
A well-defined set of transcriptional regulatory modules was created and analyzed in the Drosophila embryo.Fractional occupancy-based models were developed to explain the interaction of short range transcriptional repressors with endogenous activators by using quantitative data from these modules.Our fractional occupancy-based modeling uncovered specific quantitative features of short-range repressors; a complex nonlinear quenching relationship, similar quenching efficiencies for different activators, and modest levels of cooperativityThe extension of the study to endogenous enhancers highlighted several features of enhancer architecture design in Drosophila embryos.
To assess the impact of genetic variation in regulatory loci on human health, we construct a high-resolution map of allelic imbalances in DNA methylation, histone marks, and gene transcription in 71 epigenomes from 36 distinct cell and tissue types from 13 donors. Deep whole-genome bisulfite sequencing of 49 methylomes reveals sequence-dependent CpG methylation imbalances at thousands of heterozygous regulatory loci. Such loci are enriched for stochastic switching, defined as random transitions between fully methylated and unmethylated states of DNA. The methylation imbalances at thousands of loci are explainable by different relative frequencies of the methylated and unmethylated states for the two alleles. Further analyses provide a unifying model that links sequence-dependent allelic imbalances of the epigenome, stochastic switching at gene regulatory loci, and disease-associated
DNA variation in Interferon Regulatory Factor 6 (IRF6) causes Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate (CLP). However, an etiologic variant in IRF6 has been found in only 70% of VWS families. To test whether DNA variants in regulatory elements cause VWS, we sequenced three conserved elements near IRF6 in 70 VWS families that lack an etiologic mutation within IRF6 exons. A rare mutation (350dupA) was found in a conserved IRF6 enhancer element (MCS9.7) in a Brazilian family. The 350dupA mutation abrogated the binding of p63 and E47 transcription factors to cis-overlapping motifs, and significantly disrupted enhancer activity in human cell cultures. Moreover, using a transgenic assay in mice, the 350dupA mutation disrupted the activation of MCS9.7 enhancer element and led to failure of lacZ expression in all head and neck pharyngeal arches. Interestingly, disruption of the p63 Motif1 and/or E47 binding sites by nucleotide substitution did not fully recapitulate the effect of the 350dupA mutation. Rather, we recognized that the 350dupA created a CAAAGT motif, a binding site for Lef1 protein. We showed that Lef1 binds to the mutated site and that overexpression of Lef1/β-Catenin chimeric protein repressed MCS9.7-350dupA enhancer activity. In conclusion, our data strongly suggest that 350dupA variant is an etiologic mutation in VWS patients and disrupts enhancer activity by a loss- and gain-of-function mechanism, and thus support the rationale for additional screening for regulatory mutations in patients with CLP.
The likelihood of birth defects in orofacial tissues is high due to the structural and developmental complexity of the face and the susceptibility to intrinsic and extrinsic perturbations. Skeletal malocclusion is caused by the distortion of the proper mandibular and/or maxillary growth during fetal development. Patients with skeletal malocclusion may suffer from dental deformities, bruxism, teeth crowding, trismus, mastication difficulties, breathing obstruction and digestion disturbance if the problem is left untreated. In this review, we focused on skeletal malocclusion that affects 27.9% of the US population with different severity levels. We summarized the prevalence of class I, II and III of malocclusion in different ethnic groups and discussed the most frequent medical disorders associated with skeletal malocclusion. Dental anomalies that lead to malocclusion such as tooth agenesis, crowding, missing teeth and abnormal tooth size are not addressed in this review. We propose a modified version of malocclusion classification for research purposes to exhibit a clear distinction between skeletal vs. dental malocclusion in comparison to Angle’s classification. In addition, we performed a cross-sectional analysis on orthodontic (malocclusion) data through the BigMouth Dental Data Repository to calculate potential association between malocclusion with other medical conditions. In conclusion, this review emphasizes the need to identify genetic and environmental factors that cause or contribute risk to skeletal malocclusion and the possible association with other medical conditions to improve assessment, prognosis and therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.