Intensive agricultural activities near prairie wetlands may result in excessive sediment loads, which may bury seed and invertebrate egg banks that are important for maintenance and cycling of biotic communities during wet/dry cycles. We evaluated effects of sediment burial on emergence of plants and invertebrates from seed and invertebrate egg banks. Sediment-load experiments indicated that burial depths of 0.5 cm caused a 91.7% reduction in total seedling emergence and a 99.7% reduction in total invertebrate emergence. Results of our burial experiments corroborated prior research on seedling emergence. However, our study demonstrated that invertebrate emergence is also highly susceptible to the effects of burial. Our research suggests that sediment entering wetlands from agricultural erosion may also hamper successional changes throughout interannual climate cycles. Land-management strategies need to be implemented that will prevent erosion of cropland top soil from entering wetlands.
I assessed the population dynamics of fathead minnows (Pimephales promelas) in prairie wetlands and developed a bioenergetics model to estimate their production and prey consumption. I sampled populations in four wetlands weekly from late May through June and biweekly during July and August using a Kushlan 1-m2 throw trap. I imposed commercial harvest on two populations; the other two populations served as controls. Weekly population density estimates ranged from 52 000 to 356 000 ·ha-1 during early June and from 5400 to 19 700 ·ha-1 in late August. Simulated commercial harvest did not influence population density, mortality rates, or size of fathead minnows. Standing stock biomass differed among wetlands sampled, ranging from 144 to 482 kg ·ha-1 in early June and from 1 to 33 kg ·ha-1 during late August. However, differences were attributed to differential predation pressure rather than harvest pressure. Net production during the period ranged from 71.5 to 202.7 kg ·ha-1. Daily net production was greatest in early June (2.6-13.5 kg ·ha-1 ·day-1) and then declined during July and August (0.1-1.2 kg ·ha-1 ·day-1). Total mass of prey consumed by fathead minnows ranged from 332.7-1104.8 kg ·ha-1 among wetlands.
1. We compared the size distribution of aquatic invertebrates in two prairie wetlands, one supporting a population of fathead minnows and the other fishless. Both wetlands were sampled in three depth zones on three dates, allowing assessment of temporal and spatial variation.
2. We determined biomass of aquatic invertebrates in 17 log2 size classes, and used these data to develop normalized size spectra. We also coupled size distributions with an allometric model to estimate relative production at the community level.
3. The composition of the invertebrate communities differed greatly between sites, and invertebrate biomass was higher in nearly all size classes in the fishless wetland. Intercepts of normalized size spectra were significantly different between wetlands, but slopes generally were not, indicating differences in standing‐stock biomass but similar size structures between the two invertebrate communities. Higher standing‐stock biomass in the fishless wetland resulted in higher relative production per unit area, but similar size distributions resulted in similar mass‐specific production (P/B) between wetlands.
4. Our results indicate that invertebrate communities in prairie wetlands may have relatively consistent size structures in spite of large differences in community composition and standing‐stock biomass. We hypothesize that the observed differences are because of predation by the minnow population and/or differences in the macrophyte communities between the two sites. However, the relative importance of macrophytes and fish predation in structuring invertebrate communities in prairie wetlands is poorly known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.