COVID-19 was declared a pandemic by WHO on March 11, 2020, the first non-influenza pandemic, affecting more than 200 countries and areas, with more than 5•9 million cases by May 31, 2020. Countries have developed strategies to deal with the COVID-19 pandemic that fit their epidemiological situations, capacities, and values. We describe China's strategies for prevention and control of COVID-19 (containment and suppression) and their application, from the perspective of the COVID-19 experience to date in China. Although China has contained severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and nearly stopped indigenous transmission, a strong suppression effort must continue to prevent re-establishment of community transmission from importation-related cases. We believe that case finding and management, with identification and quarantine of close contacts, are vitally important containment measures and are essential in China's pathway forward. We describe the next steps planned in China that follow the containment effort. We believe that sharing countries' experiences will help the global community manage the COVID-19 pandemic by identifying what works in the struggle against SARS-CoV-2.
In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10–20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.