Borylations of inert carbon–hydrogen bonds are highly useful for transforming feedstock chemicals into versatile organoboron reagents. Catalysis of these reactions has historically relied on precious-metal complexes, which promote dehydrogenative borylations with diboron reagents under oxidant-free conditions. Recently, photoinduced radical-mediated borylations involving hydrogen atom transfer pathways have emerged as attractive alternatives because they provide complimentary regioselectivities and proceed under metal-free conditions. However, these net oxidative processes require stoichiometric oxidants and therefore cannot compete with the high atom economy of their precious-metal-catalyzed counterparts. Herein, we report that CuCl2 catalyzes radical-mediated, dehydrogenative C(sp3)–H borylations of alkanes with bis(catecholato)diboron under oxidant-free conditions. This is a result of an unexpected dual role of the copper catalyst, which promotes oxidation of the diboron reagent to generate an electrophilic bis-boryloxide that acts as an effective borylating agent in subsequent redox-neutral photocatalytic C–H borylations.
Site‐selective transition‐metal‐catalyzed mono‐deboronative cross‐couplings of 1,2‐bis‐boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross‐couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox‐catalyzed mono‐deboronative arylation of 1,2‐bis‐boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2‐boron shift of primary β‐boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β‐aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis‐1,2‐bis‐boronic esters to give trans‐substituted products.
Site‐selective transition‐metal‐catalyzed mono‐deboronative cross‐couplings of 1,2‐bis‐boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross‐couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox‐catalyzed mono‐deboronative arylation of 1,2‐bis‐boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2‐boron shift of primary β‐boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β‐aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis‐1,2‐bis‐boronic esters to give trans‐substituted products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.