In this work, we study the achievable rate and the energy efficiency of Analog, Hybrid and Digital Combining (AC, HC and DC) for millimeter wave (mmW) receivers. We take into account the power consumption of all receiver components, not just Analog-to-Digital Converters (ADC), determine some practical limitations of beamforming in each architecture, and develop performance analysis charts that enable comparison of different receivers simultaneously in terms of two metrics, namely, Spectral Efficiency (SE) and Energy Efficiency (EE). We present a multi-objective utility optimization interpretation to find the best SE-EE weighted trade-off among AC, DC and HC schemes. We consider an Additive Quantization Noise Model (AQNM) to evaluate the achievable rates with low resolution ADCs. Our analysis shows that AC is only advantageous if the channel rank is strictly one, the link has very low SNR, or there is a very stringent low power constraint at the receiver. Otherwise, we show that the usual claim that DC requires the highest power is not universally valid. Rather, either DC or HC alternatively result in the better SE vs EE trade-off depending strongly on the considered power consumption characteristic values for each component of the mmW receiver.
Abstract-Millimeter wave (mmWave) communication is envisioned as a cornerstone to fulfill the data rate requirements for fifth generation (5G) cellular networks. In mmWave communication, beamforming is considered as a key technology to combat the high path-loss, and unlike in conventional microwave communication, beamforming may be necessary even during initial access/cell search. Among the proposed beamforming schemes for initial cell search, analog beamforming is a power efficient approach but suffers from its inherent search delay during initial access. In this work, we argue that analog beamforming can still be a viable choice when context information about mmWave base stations (BS) is available at the mobile station (MS). We then study how the performance of analog beamforming degrades in case of angular errors in the available context information. Finally, we present an analog beamforming receiver architecture that uses multiple arrays of Phase Shifters and a single RF chain to combat the effect of angular errors, showing that it can achieve the same performance as hybrid beamforming.
The existing sub-6 GHz band is insufficient to support the bandwidth requirement of emerging data-rate-hungry applications and Internet of Things devices, requiring ultrareliable low latency communication (URLLC), thus making the migration to millimeter-wave (mmWave) bands inevitable. A notable disadvantage of a mmWave band is the significant losses suffered at higher frequencies that may not be overcome by novel optimization algorithms at the transmitter and receiver and thus result in a performance degradation. To address this, Intelligent Reflecting Surface (IRS) is a new technology capable of transforming the wireless channel from a highly probabilistic to a highly deterministic channel and as a result, overcome the significant losses experienced in the mmWave band. This paper aims to survey the design and applications of an IRS, a 2-dimensional (2D) passive metasurface with the ability to control the wireless propagation channel and thus achieve better spectral efficiency (SE) and energy efficiency (EE) to aid the fifth and beyond generation to deliver the required data rate to support current and emerging technologies. It is imperative that the future wireless technology evolves toward an intelligent software paradigm, and the IRS is expected to be a key enabler in achieving this task. This work provides a detailed survey of the IRS technology, limitations in the current research, and the related research opportunities and possible solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.