Diabetic patients develop cardiomyopathy characterized by hypertrophy, diastolic dysfunction, lipotoxicity, and mitochondrial dysfunction. How mitochondrial function is regulated in diabetic cardiomyopathy remains poorly understood. Mice were fed either a normal diet (ND) or a high fat diet (HFD, 60 kcal % fat). Mitophagy, evaluated with Mito‐Keima, was increased after 3 weeks of HFD feeding (mitophagy area: 8.3% per cell with ND and 12.4% with HFD) and continued to increase after 20 weeks (p<0.05). Although we have shown recently that mitophagy during the early phase of HFD feeding is mediated by Atg7‐dependent mechanisms, the mechanisms mediating mitophagy in the heart during the chronic phase of HFD feeding remain poorly understood. Phosphorylation of ULK1 was activated and Rab9 protein level was increased in the mitochondrial fraction within 20 weeks of HFD consumption (p<0.05). By isolating adult cardiomyocytes from GFP‐Rab9 transgenic mice fed HFD, we discovered that mitochondria were sequestrated by Rab9‐positive ring‐like structures. Since ULK1 regulates Rab9‐dependent mitophagy, we fed ULK1 cKO mice with HFD for 20 weeks. In wild type (WT) mice, cardiac hypertrophy and diastolic dysfunction (EDPVR = 0.051±0.009 in ND and 0.115±0.006 in HFD) were induced after 20 weeks of HFD feeding (p<0.05). By crossing Tg‐Mito‐Keima mice with ULK1 cKO mice, we found that downregulation of ULK1 impaired mitophagy in response to ND or 20 weeks of HFD consumption (p<0.05). Deletion of ULK1 exacerbated diastolic dysfunction (EDPVR=0.115±0.006 in WT and 0.162±0.021 in ULK1 cKO, p<0.05) and even induced systolic dysfunction (ESPVR=22.74±2.13 in WT and 16.78±2.12 in ULK1 cKO, p<0.05) during HFD feeding. Electron microscopic analyses indicated that the mitochondrial cristae structure was disrupted more severely in ULK1 cKO mice with HFD feeding than control mice (p<0.05). In summary, genetic disruption of ULK1‐Rab9‐dependent mitophagy during the chronic phase of HFD feeding exacerbates mitochondrial dysfunction, thereby facilitating the development of diabetic cardiomyopathy. ULK1‐Rab9‐dependent mitophagy serves as an essential quality control mechanism for cardiac mitochondria during HFD feeding. Support or Funding Information The project was supported by AHA and NIH (5R01HL138720‐02). This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
The Hippo pathway plays an important role in determining organ size through regulation of cell proliferation and apoptosis. Hippo inactivation and consequent activation of YAP (Yes-associated protein), a transcription cofactor, have been proposed as a strategy to promote myocardial regeneration after myocardial infarction. However, the long-term effects of Hippo deficiency on cardiac function under stress remain unknown. Objective: We investigated the long-term effect of Hippo deficiency on cardiac function in the presence of pressure overload (PO). Methods and Results: We used mice with cardiac-specific homozygous knockout of WW45 (WW45cKO), in which activation of Mst1 (Mammalian sterile 20-like 1) and Lats2 (large tumor suppressor kinase 2), the upstream kinases of the Hippo pathway, is effectively suppressed because of the absence of the scaffolding protein. We used male mice at 3 to 4 month of age in all animal experiments. We subjected WW45cKO mice to transverse aortic constriction for up to 12 weeks. WW45cKO mice exhibited higher levels of nuclear YAP in cardiomyocytes during PO. Unexpectedly, the progression of cardiac dysfunction induced by PO was exacerbated in WW45cKO mice, despite decreased apoptosis and activated cardiomyocyte cell cycle reentry. WW45cKO mice exhibited cardiomyocyte sarcomere disarray and upregulation of TEAD1 (transcriptional enhancer factor) target genes involved in cardiomyocyte dedifferentiation during PO. Genetic and pharmacological inactivation of the YAP-TEAD1 pathway reduced the PO-induced cardiac dysfunction in WW45cKO mice and attenuated cardiomyocyte dedifferentiation. Furthermore, the YAP-TEAD1 pathway upregulated OSM (oncostatin M) and OSM receptors, which played an essential role in mediating cardiomyocyte dedifferentiation. OSM also upregulated YAP and TEAD1 and promoted cardiomyocyte dedifferentiation, indicating the existence of a positive feedback mechanism consisting of YAP, TEAD1, and OSM. Conclusions: Although activation of YAP promotes cardiomyocyte regeneration after cardiac injury, it induces cardiomyocyte dedifferentiation and heart failure in the long-term in the presence of PO through activation of the YAP-TEAD1-OSM positive feedback mechanism.
New findings r What is the central question of this study? Does angiotensin II directly induce skeletal muscle abnormalities? r What is the main finding and its importance?Angiotensin II induces skeletal muscle abnormalities and reduced exercise capacity. Mitochondrial dysfunction and a decreased number of oxidative fibres are manifest early, while muscle atrophy is seen later. Thus, angiotensin II may play an important role in the skeletal muscle abnormalities observed in a wide variety of diseases.Skeletal muscle abnormalities, such as mitochondrial dysfunction, a decreased percentage of oxidative fibres and atrophy, are the main cause of reduced exercise capacity observed in ageing and various diseases, including heart failure. The renin-angiotensin system, particularly angiotensin II (Ang II), is activated in the skeletal muscle in these conditions. Here, we examined whether Ang II could directly induce these skeletal muscle abnormalities and investigated their time course. Angiotensin II (1000 ng kg −1 min −1 ) or vehicle was administered to male C57BL/6J mice (10-12 weeks of age) via subcutaneously implanted osmotic minipumps for 1 or 4 weeks. Angiotensin II significantly decreased body and hindlimb skeletal muscle weights compared with vehicle at 4 weeks. In parallel, muscle cross-sectional area was also decreased in the skeletal muscle at 4 weeks. Muscle RING finger-1 and atrogin-1 were significantly increased in the skeletal muscle from mice treated with Ang II. In addition, cleaved caspase-3 and terminal deoxynucleotidyl trasferase-mediated dUTP nick-positive nuclei were significantly increased in mice treated with Ang II at 1 and 4 weeks, respectively. Mitochondrial oxidative enzymes, such as citrate synthase, complex I and complex III activities were significantly decreased in the skeletal muscle from mice treated Ang II at 1 and 4 weeks. NAD(P)H oxidase-derived superoxide production was increased. NADH staining revealed that type I fibres were decreased and type IIb fibres increased in mice treated with Ang II at 1 week. The work and running distance evaluated by a treadmill test were significantly decreased in mice treated with Ang II at 4 weeks. Thus, Ang II could directly induce the abnormalities in skeletal muscle function and structure.
Rationale: Obesity-associated cardiomyopathy characterized by hypertrophy and mitochondrial dysfunction. Mitochondrial quality control mechanisms, including mitophagy, are essential for the maintenance of cardiac function in obesity-associated cardiomyopathy. However, autophagic flux peaks at around 6 weeks of high-fat diet (HFD) consumption and declines thereafter. Objective: We investigated whether mitophagy is activated during the chronic phase of cardiomyopathy associated with obesity (obesity cardiomyopathy) after general autophagy is downregulated and, if so, what the underlying mechanism and the functional significance are. Methods and Results: Mice were fed either a normal diet or a HFD (60 kcal% fat). Mitophagy, evaluated using Mito-Keima, was increased after 3 weeks of HFD consumption and continued to increase after conventional mechanisms of autophagy were inactivated, at least until 24 weeks. HFD consumption time-dependently upregulated both Ser555-phosphorylated Ulk1 (unc-51 like kinase 1) and Rab9 (Ras-related protein Rab-9) in the mitochondrial fraction. Mitochondria were sequestrated by Rab9-positive ring-like structures in cardiomyocytes isolated from mice after 20 weeks of HFD consumption, consistent with the activation of alternative mitophagy. Increases in mitophagy induced by HFD consumption for 20 weeks were abolished in cardiac-specific ulk1 knockout mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. Rab9 S179A knock-in mice, in which alternative mitophagy is selectively suppressed, exhibited impaired mitophagy and more severe cardiac dysfunction than control mice following HFD consumption for 20 weeks. Overexpression of Rab9 in the heart increased mitophagy and protected against cardiac dysfunction during HFD consumption. HFD-induced activation of Rab9-dependent mitophagy was accompanied by upregulation of TFE3 (transcription factor binding to IGHM enhancer 3), which plays an essential role in transcriptional activation of mitophagy. Conclusions: Ulk1-Rab9-dependent alternative mitophagy is activated during the chronic phase of HFD consumption and serves as an essential mitochondrial quality control mechanism, thereby protecting the heart against obesity cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.