BackgroundLeg weakness issues are a great concern for the pig breeding industry, especially with regard to animal welfare. Traits associated with leg weakness are partly influenced by the genetic background of the animals but the genetic basis of these traits is not yet fully understood. The aim of this study was to identify quantitative trait loci (QTL) affecting leg weakness in pigs.MethodsThree hundred and ten F2 pigs from a Duroc × Pietrain resource population were genotyped using 82 genetic markers. Front and rear legs and feet scores were based on the standard scoring system. Osteochondrosis lesions were examined histologically at the head and the condylus medialis of the left femur and humerus. Bone mineral density, bone mineral content and bone mineral area were measured in the whole ulna and radius bones using dual energy X-ray absorptiometry. A line-cross model was applied to determine QTL regions associated with leg weakness using the QTL Express software.ResultsEleven QTL affecting leg weakness were identified on eight autosomes. All QTL reached the 5% chromosome-wide significance level. Three QTL were associated with osteochondrosis on the humerus end, two with the fore feet score and two with the rear leg score. QTL on SSC2 and SSC3 influencing bone mineral content and bone mineral density, respectively, reached the 5% genome-wide significance level.ConclusionsOur results confirm previous studies and provide information on new QTL associated with leg weakness in pigs. These results contribute towards a better understanding of the genetic background of leg weakness in pigs.
The present study was aimed to determine the association between metalloproteinase 3 (MMP3), transforming growth factor beta 1 (TGFβ1) and collagen type X alpha I (COL10A1) gene polymorphisms with traits related to leg weakness in pigs. Three hundred Duroc × Pietrain cross breds (DuPi) and 299 pigs of a commercial population (CP) were used for the experiment. DuPi animals were examined for 10 different traits describing leg and feet structure, osteochondrosis (OC) scores and bone density status. Data of OC score at condylus medialis humeri, condylus medialis femoris and distal epiphysis ulna regions of CP were used for association analysis. Significant association (P < 0.05) was found for MMP3 SNP (g.158 C>T) with OC at head of femur and bone mineral density in the DuPi population. Association (P < 0.05) was found between SNP of TGFβ1 (g.180 G>A) with rear leg score and the principle component denoting both OC and feet and leg scores in the DuPi population. No association was found between COL10A1 (g.72 C>T) and leg weakness related traits. The associations of SNPs with OC traits could not be confirmed in the commercial population. Expression analysis of the three candidate genes was performed to compare between healthy and OC. TGFβ1 was found to be highly expressed (P < 0.05) in the OC compared to healthy cartilages, but no significant different expressions were observed for MMP3 and COL10A1 genes. The present finding suggested that TGFβ1 and MMP3 genes variants have an effect on some of the leg weakness related traits.
ObjectiveAn experiment was conducted to study the blood haematology, muscle pH, and serum cortisol changes in pigs with different levels of drip loss.MethodsTwo groups (low and high) of 20 animals were selected from 100 pigs based on drip loss. All [Duroc× (Large White×Landrace)] pigs were slaughtered according to standard slaughtering procedures. At exsanguinations, blood samples were taken for the haematological parameters and serum cortisol analysis. The muscle samples were taken from longissimus dorsi muscle to evaluate the muscle pH and drip loss.ResultsHaematological parameters of low drip loss group showed higher content of white blood cells and monocytes than high drip loss group (p<0.05). The low drip loss group had higher muscle pH at 45 min (p<0.05) and 24 h (p<0.001) post-mortem than the high drip loss group. However, there was no significant difference in serum cortisol levels (p>0.05).ConclusionDrip loss is mainly affected by the muscle pH decline after slaughter and also might be affected by white blood cells and monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.