Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
: Membrane proteins are crucial for biological processes, and many of them are important to drug targets. Understanding the three-dimensional structures of membrane proteins are essential to evaluate their bio function and drug design. High-purity membrane proteins are important for structural determination. Membrane proteins have low yields and are difficult to purify because they tend to aggregate. We summarized membrane protein expression systems, vectors, tags, and detergents, which have deposited in the Protein Data Bank (PDB) in recent four-and-a-half years. Escherichia coli is the most expression system for membrane proteins, and HEK293 cells are the most commonly cell lines for human membrane protein expression. The most frequently vectors are pFastBac1 for alpha-helical membrane proteins, pET28a for beta-barrel membrane proteins, and pTRC99a for monotopic membrane proteins. The most used tag for membrane proteins is the 6×His-tag. FLAG commonly used for alpha-helical membrane proteins, Strep and GST for beta-barrel and monotopic membrane proteins, respectively. The detergents and their concentrations used for alpha-helical, beta-barrel, and monotopic membrane proteins are different, and DDM is commonly used for membrane protein purification. It can guide the expression and purification of membrane proteins, thus contributing to their structure and bio function studying.
Aims Fruit color polymorphisms are widespread in plants, but what maintains them is largely unclear. One hypothesis is that some morphs are preferred by dispersers while others have higher pre- or postdispersal fitness. This leads to the prediction that fruit color morphs will differ in pre- or postdispersal fitness. Methods We compared genetic and clonal diversity, mating system, morphological traits that might be associated with resistance to freezing, and germination, survival and seed production of progeny of the red and white fruit morphs in a population of a diploid, wild strawberry, Fragaria pentaphylla, from south-central China. Important Findings The red morph was much more abundant than the white but did not show higher genetic diversity as measured by observed and effective numbers of alleles, Shannon information index, or expected or observed heterozygosities. AMOVA showed that most of the genetic variation in the population was within rather than between morphs. Morphs did not differ in mating system parameters, and no significant biparental inbreeding was found in either morph. Gene flow between two morphs was high (Nm = 6.89). Seeds of the red morph germinated about 2 days earlier and had a 40% higher rate of germination than those of the white morph, but survival of seedlings and seed production by surviving offspring did not differ between morphs. The whole postdispersal fitness of the red morph was about two times higher than that of the white morph. Red morphs had hairier petioles but not more surface wax on leaves. Overall, results showed partial evidence for difference in pre- and postdispersal fitness between fruit color morphs in F. pentaphylla. Differences in fitness independent of dispersal may thus partially account for fruit color polymorphism in all cases.
To explore the prognostic significance and underlying mechanism of TYRO protein tyrosine kinase-binding protein (TYROBP) in osteosarcoma. Firstly, the expression of TYROBP was analyzed using the t test. The Kaplan–Meier plotter analysis and a receiver operating characteristic curve were performed to evaluate the influence of TYROBP on overall survival (OS). Further, Cox regression analysis was conducted to predict the independent prognostic factors for OS of osteosarcoma patients, and a nomogram was constructed. Then, the relationship between TYROBP and clinicopathological characteristics was determined using statistical methods. Enrichment analyses were conducted to evaluate the biological functions of TYROBP. Finally, the ESTIMATE algorithm was used to assess the association of TYROBP with immune cell infiltration. TYROBP was significantly increased in osteosarcoma (all P < .001). However, the high expression of TYROBP was related to better OS in osteosarcoma patients. Cox regression analysis showed that TYROBP was an independent prognostic factor for predicting OS ( P = .005), especially in patients of the male sex, age <18 years, metastasis, and tumor site leg/foot (all P < .05). Besides, TYROBP mRNA expression was significantly associated with the tumor site ( P < .01) but had no remarkable relationship with age, gender, and metastasis status (all P > .05). Functional annotation and gene set enrichment analysis (GSEA) revealed that TYROBP was mainly involved in immune-related pathways. Importantly, TYROBP positively correlated with immune scores ( P < .001, R = .87). TYROBP served as an independent prognostic biomarker for OS in osteosarcoma. High TYROBP expression might prolong the survival of osteosarcoma patients mainly through promoting antitumor immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.