Summary Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intra-genic, extra-genic and inter-genic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated non-coding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into the transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.
DNA methylation at proximal promoters facilitates lineage restriction by silencing cell type–specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such nonproximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural stem cells (NSCs) and is required for neurogenesis. Genome-wide analysis of postnatal NSCs indicates that Dnmt3a occupies and methylates intergenic regions and gene bodies flanking proximal promoters of a large cohort of transcriptionally permissive genes, many of which encode regulators of neurogenesis. Surprisingly, Dnmt3a-dependent nonproximal promoter methylation promotes expression of these neurogenic genes by functionally antagonizing Polycomb repression. Thus, nonpromoter DNA methylation by Dnmt3a may be used for maintaining active chromatin states of genes critical for development.
During development of the CNS, neurons and glia are generated in a sequential manner. The mechanism underlying the later onset of gliogenesis is poorly understood, although the cytokineinduced Jak-STAT pathway has been postulated to regulate astrogliogenesis. Here, we report that the overall activity of Jak-STAT signaling is dynamically regulated in mouse cortical germinal zone during development. As such, activated STAT1/3 and STAT-mediated transcription are negligible at early, neurogenic stages, when neurogenic factors are highly expressed. At later, gliogenic periods, decreased expression of neurogenic factors causes robust elevation of STAT activity. Our data demonstrate a positive autoregulatory loop whereby STAT1/3 directly induces the expression of various components of the Jak-STAT pathway to strengthen STAT signaling and trigger astrogliogenesis. Forced activation of Jak-STAT signaling leads to precocious astrogliogenesis, and inhibition of this pathway blocks astrocyte differentiation. These observations suggest that autoregulation of the Jak-STAT pathway controls the onset of astrogliogenesis.During embryonic development, the generation of three major neural cell types (neurons, astrocytes, and oligodendrocytes) in the CNS occurs sequentially, whereby almost all neurons are generated before the appearance of glial cells 1,2 , with the exception of a few COMPETING INTERESTS STATEMENTThe authors declare that they have no competing financial interests. NIH Public Access Author ManuscriptNat Neurosci. Author manuscript; available in PMC 2014 November 06. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript sites of postnatal and adult neurogenesis such as the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the forebrain 3 . This strategy of building the CNS through sequential production of neurons and glia has become more comprehensible, as recent findings have demonstrated that glial cells are important in critical neuronal maturation processes such as axonal path finding and synapse formation [4][5][6] . It is conceivable that delayed or precocious production of glial cells may lead to inappropriate wiring, disorganization, and eventually, dysfunction of the CNS.The 'neurons-first, glia-second' differentiation theme for neural progenitors can be recapitulated in culture. Cortical neural progenitor stem cells isolated from relatively early embryonic stages (for example, mouse embryonic day (E) 10-11) give rise to neurons, not glial cells, after short-term culturing (fewer than 4 d), whereas cortical progenitors isolated from perinatal stages tend to differentiate into astrocytes under the same culture conditions 7 .In addition, both E10-11 cortical progenitors and embryonic stem cell-derived neural stem or progenitor cells (NSCs or NPCs) switch from being neurogenic to gliogenic over time in vitro 8,9 , suggesting that the molecular switch for the transition from neurogenesis to gliogenesis may be internally programmed in neural progenitors.S...
DNA methylation is a major epigenetic factor that has been postulated to regulate cell lineage differentiation. We report here that conditional gene deletion of the maintenance DNA methyltransferase I (Dnmt1) in neural progenitor cells (NPCs) results in DNA hypomethylation and precocious astroglial differentiation. The developmentally regulated demethylation of astrocyte marker genes as well as genes encoding the crucial components of the gliogenic JAK-STAT pathway is accelerated in Dnmt1–/– NPCs. Through a chromatin remodeling process, demethylation of genes in the JAK-STAT pathway leads to an enhanced activation of STATs, which in turn triggers astrocyte differentiation. Our study suggests that during the neurogenic period, DNA methylation inhibits not only astroglial marker genes but also genes that are essential for JAK-STAT signaling. Thus, demethylation of these two groups of genes and subsequent elevation of STAT activity are key mechanisms that control the timing and magnitude of astroglial differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.