CpG-DNA or its synthetic analog CpG-ODN activates innate immunity through Toll-like receptor 9 (TLR9). However, the mechanism of TLR9 activation by CpG-DNA remains elusive. Here we have identified HMGB1 as a CpG-ODN–binding protein. HMGB1 interacts and preassociates with TLR9 in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), and hastens TLR9's redistribution to early endosomes in response to CpG-ODN. CpG-ODN stimulates macrophages and dendritic cells to secrete HMGB1; in turn, extracellular HMGB1 accelerates the delivery of CpG-ODNs to its receptor, leading to a TLR9-dependent augmentation of IL-6, IL-12, and TNFα secretion. Loss of HMGB1 leads to a defect in the IL-6, IL-12, TNFα, and iNOS response to CpG-ODN. However, lack of intracellular TLR9-associated HMGB1 can be compensated by extracellular HMGB1. Thus, the DNA-binding protein HMGB1 shuttles in and out of immune cells and regulates inflammatory responses to CpG-DNA.
Viral infection or double-stranded (ds) RNA induce interferons (IFN) and other cytokines. Transcription factors mediating IFN induction are known, but the signaling pathways that regulate them are less clear. We now describe two such pathways. The first pathway leading to NF-kappaB depends on the dsRNA-responsive protein kinase (PKR), which in turn activates IKB kinase (IKK) through the IKKbeta subunit. The second viral-and dsRNA-responsive pathway is PKR independent and involves Jun kinase (JNK) activation leading to stimulation of AP-1. Both IKKbeta and JNK2 are essential for efficient induction of type I IFN and other cytokines in response to viral infection or dsRNA. This study establishes a general role for these kinases in activation of innate immune responses.
The abundance of Alu RNA is transiently increased by heat shock in human cell lines. This effect is specific to Alu repeats among Pol III transcribed genes, since the abundance of 7SL, 7SK, 5S and U6 RNAs is essentially unaffected by heat shock. The rapid induction of Alu expression precedes the heat shock induction of mRNAs for the ubiquitin and HSP 70 heat shock genes. Heat shock mimetics also transiently induce Alu expression indicating that increased Alu expression is a general cell-stress response. Cycloheximide treatment rapidly and transiently increases the abundance of Alu RNA. Again, compared with other genes transcribed by Pol III, this increase is specific to Alu. However, as distinguished from the cell stress response, cycloheximide does not induce expression of HSP 70 and ubiquitin mRNAs. Puromycin also increases Alu expression, suggesting that this response is generally caused by translational inhibition. The response of mammalian SINEs to cell stress and translational inhibition is not limited to SINEs which are Alu homologues. Heat shock and cycloheximide each transiently induce Pol III directed expression of B1 and B2 RNAs in mouse cells and C-element RNA in rabbit cells. Together, these three species exemplify the known SINE composition of placental mammals, suggesting that mammalian SINEs are similarly regulated and may serve a common function.
Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA by cotransient transfection increased the expression of a reporter construct, which is consistent with an inhibitory effect on PKR. Alu RNA formed stable, discrete complexes with PKR in vitro, bound PKR in vivo, and antagonized PKR activation both in vitro and in vivo. Alu RNAs produced by either overexpression or exposure of cells to heat shock bound PKR, whereas transiently overexpressed Alu RNA antagonized virus-induced activation of PKR in vivo. Cycloheximide treatment of cells decreased PKR activity, coincident with an increase in Alu RNA. These observations suggest that the increased levels of Alu RNAs caused by cellular exposure to different stresses regulate protein synthesis by antagonizing PKR activation. This provides a functional role for mammalian short interspersed elements, prototypical junk DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.