For the sake of accomplishing the rapidity, safety and consistency of obstacle avoidance for a large-scale unmanned aerial vehicle (UAV) swarm in a dynamic and unknown 3D environment, this paper proposes a flocking control algorithm that mimics the behavior of starlings. By analyzing the orderly and rapid obstacle avoidance behavior of a starling flock, a motion model inspired by a flock of starlings is built, which contains three kinds of motion patterns, including the collective pattern, evasion pattern and local-following pattern. Then, the behavior patterns of the flock of starlings are mapped on a fixed-wing UAV swarm to improve the ability of obstacle avoidance. The key contribution of this paper is collective and collision-free motion planning for UAV swarms in unknown 3D environments with dynamic obstacles. Numerous simulations are conducted in different scenarios and the results demonstrate that the proposed algorithm improves the speed, order and safety of the UAV swarm when avoiding obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.