Despite its importance to our understanding of physics at supranuclear densities, the equation of state (EoS) of matter deep within neutron stars remains poorly understood. Millisecond pulsars (MSPs) are among the most useful astrophysical objects in the Universe for testing fundamental physics, and place some of the most stringent constraints on this high-density EoS. Pulsar timing -the process of accounting for every rotation of a pulsar over long time periods -can precisely measure a wide variety of physical phenomena, including those that allow the measurement of the masses of the components of a pulsar binary system [1]. One of these, called relativistic Shapiro delay [2], can yield precise masses for both an MSP and its companion; however, it is only easily observed in a small subset of high-precision, highly inclined (nearly edge-on) binary pulsar systems. By combining data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-year data set with recent orbital-phase-specific observations using the Green Bank Telescope, we have measured the mass of the MSP J0740+6620 to be 2.14 +0.10 −0.09 solar masses (68.3% credibility interval; 95.4% credibility interval is 2.14 +0.20 −0.18 solar masses). It is highly 1 arXiv:1904.06759v2 [astro-ph.HE] 13 Sep 2019 likely to be the most massive neutron star yet observed, and serves as a strong constraint on the neutron star interior EoS. Relativistic Shapiro delay, which is observable when a pulsar passes behind its stellar companion during orbital conjunction, manifests as a small delay in pulse arrival times induced by the curvature of spacetime in the vicinity of the companion star. For a highly inclined MSP-white dwarf binary, the full delay is of order ∼10 µs. The relativistic effect is characterized by two parameters, "shape" and "range." In general relativity, shape (s) is the sine of the angle of inclination of the binary orbit (i), while range (r) is proportional to the mass of the companion, m c . When combined with the Keplerian mass function, measurements of r and s also constrain the pulsar mass (m p ; [3] provides a detailed overview and an alternate parameterization).Precise neutron star mass measurements are an effective way to constrain the EoS of the ultradense matter in neutron star interiors. Although radio pulsar timing cannot directly determine neutron star radii, the existence of pulsars with masses exceeding the maximum mass allowed by a given model can straightforwardly rule out that EoS.In 2010, Demorest et al. reported the discovery of a 2-solar-mass MSP, J1614−2230 [4] (though the originally reported mass was 1.97 ± 0.04 M , continued timing has led to a more precise mass measurement of 1.928±0.017 M ; Fonseca et al. 2016 [5]). This Shapiro-delay-enabled measurement disproved the plausibility of some hyperon, boson, and free quark models in nuclear-density environments. In 2013, Antoniadis et al. used optical techniques in combination with pulsar timing to yield a mass measurement of 2.01±0.04 M for the pulsar J0...
Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances [1][2][3][4][5][6][7][8] . Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections 9 . The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events 10 . Here we report the detection of ten additional bursts from the direction of FRB 121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst 4 . This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB 121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star 11,12 .2 FRB 121102 was discovered 4 in the PALFA survey, a deep search of the Galactic plane at 1.4 GHz for radio pulsars and fast radio bursts (FRBs) using the 305-m William E. Gordon Telescope at the Arecibo Observatory and the 7-beam Arecibo L-band Feed Array (ALFA) 13,14 . The observed dispersion measure (DM) of the burst is roughly three times the maximum value expected along this line of sight in the NE2001 model 15 of Galactic electron density, i.e. β DM ≡ DM FRB /DM Gal Max ∼ 3, suggesting an extragalactic origin.Initial Arecibo follow-up observations were limited in both dwell time and sky coverage and resulted in no detection of additional bursts 4 . In 2015 May and June we carried out more extensive follow-up using Arecibo, covering a ∼ 9 radius with a grid of six ALFA pointings around the then-best sky position of FRB 121102 (Figure 1 and Extended Data Table 1 and 2). As described in the Methods, high-time-resolution, total intensity spectra were recorded, and the data were processed using standard radio-frequency interference (RFI) excision, dispersion removal, and single-pulse-search algorithms implemented in the PRESTO software suite and associated data reduction pipelines 14,16,17 .We detected 10 additional bursts from FRB 121102 in these observations. The burst properties, and those of the initial FRB 121102 burst, are listed in Table 1. The burst intensities are shown in Figure 2. No other periodic or single-pulse signals of a plausible astrophysical origin were detected at any other DM. Until the source's physical nature is clear, we continue to refer to it as FRB 121102 and label each burst chronologically starting with the o...
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors arXiv:1801.02617v2 [astro-ph.HE] 7 Jun 2018 2 THE NANOGRAV COLLABORATION can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW strain amplitude of A GWB < 1.45 × 10 −15 at a frequency of f = 1-yr −1 for a fiducial f −2/3 power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of ∼ 2 improvement over the NANOGrav 9-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gµ < 5.3 × 10 −11 -a factor of ∼ 2 better than the published NANOGrav 9-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is Ω GWB ( f )h 2 < 3.4 × 10 −10 .
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. ABSTRACT Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm −3 , pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = −0.• 2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.
We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make fourteen significant measurements of Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613−0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as m p = 1.18 +0.10 −0.09 M for PSR J1918−0642 and as high as m p = 1.928 +0.017 −0.017 M for PSR J1614−2230 (both 68.3% credibility). We make an improved measurement of the Shapiro timing delay in the PSR J1918−0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be m p = 1.41 +0.21 −0.18 M (68.3% credibility) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these measurements to further constrain our estimates of the pulsar and companion masses whenever possible. In particular, we used the observed Shapiro delay and periastron advance due to relativistic gravity in the PSR J1903+0327 system to derive a pulsar mass of m p = 1.65 +0.02 −0.02 M (68.3% credibility). We discuss the implications that our mass measurements have on the overall neutron-star mass distribution, and on the "mass/orbital-period" correlation due to extended mass transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.