In maize (Zea mays), abscisic acid (ABA)-induced H2O2 production activates a 46 kDa mitogen-activated protein kinase (p46MAPK), and the activation of p46MAPK also regulates the production of H2O2. However, the mechanism for the regulation of H2O2 production by MAPK in ABA signalling remains to be elucidated. In this study, four reactive oxygen species (ROS)-producing NADPH oxidase (rboh) genes (ZmrbohA–D) were isolated and characterized in maize leaves. ABA treatment induced a biphasic response (phase I and phase II) in the expression of ZmrbohA–D and the activity of NADPH oxidase. Phase II induced by ABA was blocked by pretreatments with two MAPK kinase (MPKKK) inhibitors and two H2O2 scavengers, but phase I was not affected by these inhibitors or scavengers. Treatment with H2O2 alone also only induced phase II, and the induction was arrested by the MAPKK inhibitors. Furthermore, the ABA-activated p46MAPK was partially purified. Using primers corresponding to the sequences of internal tryptic peptides, the p46MAPK gene was cloned. Analysis of the tryptic peptides and the p46MAPK sequence indicate it is the known ZmMPK5. Treatments with ABA and H2O2 led to a significant increase in the activity of ZmMPK5, although ABA treatment only induced a slight increase in the expression of ZmMPK5. The data indicate that H2O2-activated ZmMPK5 is involved in the activation of phase II in ABA signalling, but not in phase I. The results suggest that there is a positive feedback loop involving NADPH oxidase, H2O2, and ZmMPK5 in ABA signalling.
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Carboxymethyl chitosan (CM-chitosan), which is a water-soluble derivative of chitosan, has attracted much attention as a new biomedical material. The safety study of this material was persuasive for its potential application. The present study was conducted to assess the tissue distribution, pharmacokinetics, biodegradation mechanism, and excretion of CM-chitosan in rats. After the rats were intraperitoneally injected at the dose of 50 mg/kg, the fluorescein isothiocyanate (FITC)-labeled CM-chitosan was absorbed rapidly and distributed to different organs, including liver, spleen, and kidney. The highest level of CM-chitosan was found in liver. It was at the level of 1.6 +/- 0.6 mg/liver and made up approximately 10-22% of the total injected FTC-CM-chitosan. Urinary excretion was the predominant way of excretion of FITC-labeled CM-chitosan, and 85% of the dose was excreted in urine over the period of 11 days. The molecular weights of body distributed FTC-CM-chitosan and urinary excreted FTC-CM-chitosan were analyzed by gel chromatography. The results indicated that the FTC-CM-chitosan was degraded in abdominal dropsy. The absorbed CM-chitosan forms were found with a relatively high molecular weight (approximately 300 kDa), whereas the molecular weight of the urinary excreted FTC-CM-chitosan was less than 45 kDa. In vitro research revealed that the CM-Chi was also degradable in plasma and homogenate of liver. The CM-chitosan with a molecular weight of approximately 800k was thoroughly degraded to a small molecule after it was incubated in homogenate of liver at 37 degrees C for 24 h. The results suggested that the liver plays a central role in biodegradation of CM-chitosan. The excellent biodegradability of CM-chitosan could potentially contribute to the clinical applications. The results also provide important clues for further modification of CM-chitosan as the postsurgical and other biomedical materials.
A mutant of Arabidopsis thaliana, amt-7, was previously selected for resistance to growth inhibition by the tryptophan analog a-methyltryptophan. This mutant had elevated tryptophan levels and exhibited higher anthranilate synthase (AS) activity that showed increased resistance to feedback inhibition by tryptophan. In this study, extracts of the mutant callus exhibited higher AS activity than wild-type callus when assayed with either glutamine or ammonium sulfate as amino donor, thus suggesting that elevated AS activity in the mutant was dueto an alteration i n the a subunit of the enzyme. The mutant also showed cross-resistance to 5-methylanthranilate and 6-methylanthranilate and mapped to chromosome V at or close to ASA7 (a gene encoding the AS a subunit). ASA7 mRNA and protein levels were similar in mutant and wild-type leaf extracts. Levels of ASA7 mRNA and protein were also similar in callus cultures of mutant and wild type, although the levels in callus were higher than in leaf tissue. Sequencing of the ASAl gene from amt-1 revealed a C to A transition relative to the wild-type gene that would result in the substitution of an asparagine residue in place of aspartic acid at position 341 in the predicted amino acid sequence of the ASAl protein. l h e mutant allele i n strain amt-1 has been renamed trp5-1.
The accumulation of conjugates of indole‐3‐acetic acid (IAA) in Arabidopsis thaliana was studied by incubating tissues with high concentrations of exogenous IAA, followed by reverse phase HPLC analysis of the extracts. Using fluorescence detection, indole‐3‐acetyl‐aspartate, indole‐3‐acetyl‐glutamate, and indole‐3‐acetyl‐glucose were observed and quantitated in extracts of tissue after 24 h incubation with 500 μM IAA. In addition, a new metabolite was detected and positively identified as indole‐3‐acetyl‐glutamine by fast atom bombardment mass spectrometry, exact mass measurement, and tandem mass spectrometry in comparison with a synthetic standard. The amounts of individual conjugates formed differed between leaves, shoot axes and roots. In all three tissues, indole‐3‐acetyl‐aspartate was the most abundant conjugate, the highest level being observed in roots. Highest levels of indole‐3‐acetyl‐glutamine were observed in leaves, where it was the second most abundant conjugate and comprised approximately 12% of the fluorescent metabolites. Accumulation of the three amide conjugates was dramatically inhibited by cycloheximide, whereas accumulation of indole‐3‐acetyl‐glucose was little affected. Based on these data, a screen for Arabidopsis mutants altered in the IAA‐inducible system for auxin conjugate formation was initiated. The first mutant to be isolated and characterized produces more indole‐3‐acetyl‐glutamine and less indole‐3‐acetyl‐aspartate than wild‐type, and is allelic to an existing class of photorespiration mutants (gluS) deficient in chloroplastic glutamate synthase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.