Bioluminescence has been hypothesized as aposematic signalling, intersexual communication and a predatory strategy, but origins and relationships among bioluminescent beetles have been contentious. We reconstruct the phylogeny of the bioluminescent elateroid beetles (i.e. Elateridae, Lampyridae, Phengodidae and Rhagophthalmidae), analysing genomic data of Sinopyrophorus Bi & Li, and in light of our phylogenetic results, we erect Sinopyrophoridae Bi & Li, stat.n. as a clicking elaterid‐like sister group of the soft‐bodied bioluminescent elateroid beetles, that is, Lampyridae, Phengodidae and Rhagophthalmidae. We suggest a single origin of bioluminescence for these four families, designated as the ‘lampyroid clade’, and examine the origins of bioluminescence in the terminal lineages of click beetles (Elateridae). The soft‐bodied bioluminescent lineages originated from the fully sclerotized elateroids as a derived clade with clicking Sinopyrophorus and Elateridae as their serial sister groups. This relationship indicates that the bioluminescent soft‐bodied elateroids are modified click beetles. We assume that bioluminescence was not present in the most recent common ancestor of Elateridae and the lampyroid clade and it evolved among this group with some delay, at the latest in the mid‐Cretaceous period, presumably in eastern Laurasia. The delimitation and internal structure of the elaterid‐lampyroid clade provides a phylogenetic framework for further studies on the genomic variation underlying the evolution of bioluminescence.
The new subfamily Sinopyrophorinae within Elateridae is proposed to accommodate a bioluminescent species, Sinopyrophorusschimmeli Bi & Li, gen. et sp. nov., recently discovered in Yunnan, China. This lineage is morphologically distinguished from other click-beetle subfamilies by the strongly protruding frontoclypeal region, which is longitudinally carinate medially, the pretarsal claws without basal setae, the hind wing venation with a well-defined wedge cell, the abdomen with seven (male) or six (female) ventrites, the large luminous organ on the abdominal sternite II, and the male genitalia with median lobe much shorter than parameres, and parameres arcuate, with the inner margin near its apical third dentate. Molecular phylogeny based on the combined 14 mitochondrial and two nuclear genes supports the placement of this taxon far from other luminescent click-beetle groups, which provides additional evidence for the multiple origin of bioluminescence in Elateridae. Illustrations of habitus and main diagnostic features of S.schimmeli Bi & Li, gen. et sp. nov. are provided, as well as the brief description of its luminescent behavior.
The nearly complete mitochondrial genome (mitogenome) of Sinopyrophorus schimmeli Bi et Li, the luminous click beetle recorded in Asia, is described in this study. It totalizes 15,951 bp and contains 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes, and most part of AT-rich region. Thirteen PCGs totalize 11,136 bp, start with ATN, stop with TAA/G, except for cox2 and cox3 stopping with T. The rrnL and rrnS are 1280 and 862 bp, respectively. The AT-rich region contains several structures characteristic of the Coleoptera. The phylogenetic analyses of 13 PCGs confirm the position of S. schimmeli in Elateridae.
A new philine species belonging to a new genus, Spiniphilus spinicornis gen. et sp. nov., is described from Yunnan, China. The genus differs from other genera of the Philinae in the male antennae, segments 3–10 of which bear a long flattened lateroapical spine. Female of Heterophilus is briefly described for the first time. Photographs of the habitus and some morphological details are provided and the genera of the Philinae are keyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.