Risk incidents in the banks' systems have caused significant social impacts and economic losses. This study proposes a risk incident knowledge modeling and analysis approach based on the knowledge graphs to realize the effective integration and continuous accumulation of incident knowledge. The authors are the first to analyze the advantages of knowledge graphs in risk incident knowledge integration for the bank's core system. Moreover, they study and compare the related field's state-of-the-art models (including CRF, BiLSTM, BiLSTM-CRF, BERT-BiLSTM-CRF). This paper proposes an improved Bert-BiLSTM-CRF model to perform entity recognition which replaces “individual word mask and training” with “full word mask and training” targeted to solve the problem of low accuracy in the extraction of incident text entities in the banking system. Experiments on 1000 banking system incident material show that the improved Bert-BiLSTM-CRF model outperforms the state-of-the-art models based on the comparison of recall (R), precision (P), and F1-measure, with a 2%-9% improvement in the F1-measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.