Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes.
Complex interactions among genetic components often result in variable systemic performance in designed multigene systems. Using the bacterial clustered regularly interspaced short palindromic repeat (CRISPR) pathway we develop a synthetic RNA-processing platform, and show that efficient and specific cleavage of precursor mRNA enables reliable and predictable regulation of multigene operons. Physical separation of linked genetic elements by CRISPR-mediated cleavage is an effective strategy to achieve assembly of promoters, ribosome binding sites, cis-regulatory elements, and riboregulators into single- and multigene operons with predictable functions in bacteria. We also demonstrate that CRISPR-based RNA cleavage is effective for regulation in bacteria, archaea and eukaryotes. Programmable RNA processing using CRISPR offers a general approach for creating context-free genetic elements and can be readily used in the bottom-up construction of increasingly complex biological systems in a plug-and-play manner.
This study shows that, in bacteria grown in the laboratory, there is little correlation between when genes are important for fitness and when they are more highly expressed. Most genes thus appear to be regulated by signals that are not related to their function.
BaCKgRoUND aND aIMS:Recently, clinical trials of lenvatinib plus pembrolizumab in HCC have displayed an impressive objective response rate. This study aimed to clarify the mechanism for optimal patient selection.appRoaCH aND ReSUltS: First, in patients with HCC, lenvatinib-treated recurrent tumors had lower programmed death ligand 1 (PD-L1) expression and regulatory T cell (Treg) infiltration compared with matched primary tumors. Consistently, in C57BL/6 wild-type mice receiving antiprogrammed cell death 1 (PD-1) therapy, PD-L1 expression and Treg infiltration in s.c. tumors were reduced when adding lenvatinib to the scheme. Mechanistically, on the one hand, FGF receptor 4 (FGFR4) was the most pivotal target in PD-L1 down-regulation by lenvatinib in vitro. Furthermore, lenvatinib reinforced the proteasomal degradation of PD-L1 by blocking the FGFR4-glycogen synthase kinase 3β axis and rescued the sensitivity of interferonγ-pretreated HCC cells to T-cell killing by targeting FGFR4. On the other hand, the level of IL-2 increased after anti-PD-1 treatment, but IL-2-mediated Treg differentiation was blocked by lenvatinib through targeting FGFR4 to restrain signal transducer and activator of transcription 5 (STAT5) phosphorylation. By regulating the variations in the number of Tregs and the tumor FGFR4 level in C57BL/6-forkhead box protein P3 (Foxp3 DTR ) mice, we found that high levels of FGFR4 and Treg infiltration sensitized tumors to the combination treatment. Finally, high levels of FGFR4 and Foxp3 conferred immune tolerance but better response to the combined therapy in patient cohorts.CoNClUSIoNS: Lenvatinib reduced tumor PD-L1 level and Treg differentiation to improve anti-PD-1 efficacy by blocking FGFR4. Levels of FGFR4 expression and Treg infiltration in tumor could serve as biomarkers for screening patients with HCC using lenvatinib plus anti-PD-1 combination therapy. (Hepatology 2021;74:2544-2560). H CC, the major primary liver cancer, is the fourth most common cause of cancer-related deaths worldwide. (1) HCC is usually diagnosed in advanced stages, resulting in limited treatment options. (2) Recently, the clinical success of immune checkpoint blockade (ICB) has been encouraging for patients with cancer. ICB works primarily by targeting cytotoxic lymphocyte antigen 4, programmed cell death protein 1 (PD-1), or programmed death ligand 1 (PD-L1). Anti-PD-1, as the most promising immunotherapy strategy, has the potential to elicit durable control and even cure of some treatment-refractory cancers,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.