Environmentally benign and biodegradable chitosan (CS) membranes have disadvantages such as low mechanical strength, high brittleness, poor heat resistance and poor water resistance, which limit their applications. In this paper, home-made cellulose nanocrystals (CNC) were added to CS to prepare CNC/CS composite membranes through mechanical mixing and solution casting approaches. The effects of CNC dispersion patterns and CNC contents on the properties of composite membranes were studied. The analysis of the surface and cross-section morphology of the membranes showed that the dispersion performance of the composite membrane was better in the case that CNC was dissolved in an acetic acid solution and then mixed with chitosan by a homogenizer (Method 2). CNC had a great length-diameter ratio and CNC intensely interacted with CS. The mechanical properties of the composite membrane prepared with Method 2 were better. With a CNC content of 3%, the tensile strength of the composite membrane reached 43.0 MPa, 13.2% higher than that of the CNC-free membrane. The elongation at break was 41.6%, 56.4% higher than that of the CNC-free membrane. Thermogravimetric, contact angle and swelling analysis results showed that the addition of CNC could improve the heat and water resistance of the chitosan membrane.
An ionic liquid, N-methyl-N-propyl pyrrolidine bromide (MPPBr), was introduced into the electrolyte of Li–O2 batteries as a bi-functional redox mediator (RM). It could effectively reduce the over-potential and facilitated the formation of a more stable SEI layer on the surface of Li foil.
Electrowetting-on-dielectric is a preferred option in practical applications of the electrowetting phenomenon but limited by dielectric and breakdown performances of the dielectric layer. In the present work, a ceramic/polymer nanocomposite as a novel dielectric layer is developed to intensify the overall electrowetting performances by multiscale interface effect. Hereinto, surface fluoro-modified ZrO2 nanoparticles (mZrO2) are dispersed well in AF 1600 matrix to form a mZrO2@AF 1600 nanocomposite. The small addition of mZrO2 improves the dielectric constant of the nanocomposite, and the experimental value is larger than the theoretical value calculated by Maxwell–Garnett model, but fits well with the Rahaman–Khastgir model. The molecular dynamics simulations with the explicit model further verify the interfacial effect. Meanwhile, double contact angle modulation and higher breakdown field strength (Eb) are obtained. For the three-layer sandwich structure, both the top and bottom AF 1600 layer decrease the surface roughness for better electrowetting reproducibility and wider wettability modulation. The Forlani–Minnaja theory related to the empirical relationship between Eb and thickness of dielectric layer fit well with the monolayer structure, but cannot be applied in multi-layer structures. A new relationship is proposed to guide the design of dielectric multi-layers with high breakdown field strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.