The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.
In recent years, there has been an impressive development of nanotechnology. This has resulted in the increasing release of nanomaterials (NM) into the environment, thereby causing the risk of an uncontrolled impact on living organisms, including plants. More studies indicated the biotoxic effect of NM on plants, including crops. The interaction of nanoparticles (NP) with food crops is extremely important as they are a link to the food chain. The objective of this study was to investigate the effect of negatively charged gold nanoparticles (-) AuNP (at two concentrations; 25 µg/mL or 50 µg/mL) on barley (Hordeum vulgare L.) root development. Morphological, histological and ultrastructural analyses (with the use of stereomicroscope, bright filed microscope and transmission electron microscope) revealed that regardless of the concentration, (-) AuNP did not enter into the plant body. However, the dose of (-) AuNP proved to be important for the plant’s response because different morphological, histological and ultrastructural changes were observed in the treated roots. The NP treatment caused: red root colouration, a local increase in the root diameter and a decreased formation of the root hair cells (on morphological level), damage to the rhizodermal cells, vacuolisation of the cortical cells, a detachment of the cell files between the cortical cells, atypical divisions of the cells, disorder of the meristem organisation (on the histological level), the appearance of periplasmic space, numerous vesicles and multivesicular bodies, electron-dense spots in cytoplasm, alterations in the structure of the mitochondria, breakdown of the tonoplast and the plasmalemma (on the ultrastructural level).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.