Six microsatellite loci that were isolated from a microsatellite‐enriched genomic library of mango (Mangifera indica) along with their specific primer sets were each characterized by using 36 cultivars collected mainly in Thailand. The observed and expected heterozygosities ranged from 0 to 0.83 and from 0.29 to 0.73, respectively. The number of putative alleles are two to six. Three of the six alleles have frequencies of over 75%. The high frequency may be attributed to the bias in the origin of cultivars. Among 36 mango cultivars tested, 29 cultivars showed a unique pattern by six primer sets, whereas seven cultivars cannot be identified because of genotype similarities. This suggests the potentials for identification of mango cultivars by microsatellite markers.
The phylogenetic relationships among 14 Mangifera L. species including three economically important species, i.e., common mango (M. indica L.), horse mango (M. foetida Lour.) and kwini (M. odorata Griff.), were analyzed by comparing 217 amplified fragment length polymorphism (AFLP) markers. The unweighted pair grouping method using arithmetic averages (UPGMA) and neighbor-joining (NJ) method were used and two outgroup taxa, cashew nut (Anacardium occidentale L.) and gandaria (Bouea macrophylla Griff.), were added to both analyses. The common mango was closely related to banana mango (M. sylvatica Roxb.), M. laurina Bl., and M. oblongifolia Hook.f. Intraspecific variation among seven cultivars of common mango was much smaller than interspecific variation and these cultivars were classified into one M. indica group using both methods. Mangifera macrocarpa Bl., M. foetida, and M. odorata were also related to M. indica in both UPGMA and NJ trees, although these three species are classified into a different subgenus (subgenus Limus) from the subgenus Mangifera to which M. indica belongs. Also, in both UPGMA and NJ trees, M. gedebe Miq. and M. griffithii Hk.f. were placed in distant positions among the Mangifera species tested, indicating these two species are related distantly to M. indica. The AFLP technique was confirmed to be useful for phylogenetic analysis.
Climate change may lead to alterations in tree growth and carbon cycling. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of tree species. However, the effects of climate change on pine forest dynamics in tropical region of Thailand remain poorly understood. This study develops three new tree ring-width chronologies of Pinus latteri (Tenasserim pine) in northern and northeastern Thailand and analyzes their climate-growth relationships and temporal stability. Ring-width chronologies of P. latteri at three sites showed significantly positive correlations with precipitation, relative humidity and self-calibrated Palmer Drought Severity Index (scPDSI) during the dry season (previous November to current April) and early rainy season (May–June). Conversely, significantly negative correlations were found between ring-width site chronologies and air temperatures (mean, maximum and minimum) from April to August. Therefore, our results revealed that radial growth of Tenasserim pines from northern and northeastern Thailand was mainly limited by moisture availability during the dry-to-wet transition season from April to June. Moving correlations revealed that Tenasserim pines in the lowland area of northeastern Thailand became more sensitive to moisture availability in recent 30 years (1985–2017) as compared with early period (1951–1984). Accompanying the shifted growth sensitivity to climate change, growth synchrony among trees was increasing and tree growth rates of Tenasserim pines have been declining during recent decades at two more moisture-limited sites in northeastern Thailand. Recent rapid warming and increasing drought during the transition season (April–June) together intensify climatic constrains on tree growth of Tenasserim pines in the lowland area of northeastern Thailand. Considering continued regional climate change, pine forests in tropical lowland areas may encounter intensified drought stresses, and thus, become more vulnerable to future climate change. Our results serve as an early indicator of potential effects of climate change on tropical pine species and raise concerns about sustainable managements of pine forests under a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.