The U.S. Geological Survey conducted an extensive seismic refraction survey in the Imperial Valley region of California in 1979. The Imperial Valley is located in the Salton Trough, an active rift between the Pacific and North American plates. Forty shots fired at seven shot points were recorded by 100 portable seismic instruments at typical spacing of 0.5–1 km. More than 1300 recording locations were occupied, and more than 3000 usable seismograms were obtained. We analyzed five profiles using a standard ray‐tracing program, constructed a contour map of reduced travel times from our most widely recorded shot point, and modeled an existing gravity profile across the Salton Trough. Results are itemized: (1) All models have in common a sedimentary layer (Vp = 1.8–5.0 km/s), a “transition zone” (Vp = 5.0–5.65 km/s), a basement (Vp = 5.65 km/s in the Imperial Valley, 5.9 km/s on the bordering mesas), and subbasement (Vp = 7.2 km/s). (2) The sedimentary layer ranges in thickness along the axis of the Salton Trough from 3.7 km (Salton Sea) to 4.8 km (U.S.‐Mexican border). On the bordering mesas it is quite variable in thickness. (3) The “transition” zone is about 1 km thick in most places. In the Imperial Valley there are no marked velocity discontinuities in this zone between the sedimentary layer and basement. On the bordering mesas, however, there is a discontinuity at the top of this zone. (4) There are apparently two types of basement. On the bordering mesas, basement is crystalline igneous and metamorphic rocks. In the Imperial Valley, basement is mostly lower‐greenshist‐facies sedimentary rocks, based primarily on the smooth transition in character from sediment to basement arrivals, the low value of basement velocity, and the fact that deep (4 km) wells in the valley penetrate only the upper part of the known Cenozoic stratigraphic column for the Salton Trough. (5) The subbasement, or intermediate crustal layer, ranges in depth along the axis of the Salton Trough from 16 km (Salton Sea) to 10 km (U.S.‐Mexican border). Gravity modeling requires that this layer deepen and/or pinch out beneath the bordering mesas and mountain ranges. Based on its high velocity and the presence of intrusive basaltic rocks in the sedimentary section in the Imperial Valley, the subbasement is thought to be a mafic intrusive complex similar to oceanic middle crust. (6) Several structures are seen that affect basement, transition zone, and deeper parts of the sedimentary layer. They include a scarp along the Imperial fault, as much as 1 km down to the northeast, and a scarp passing roughly along the topographic boundary between the Imperial Valley and the bordering mesa to the west, as much as 3½ km down to the east. We interpret the latter scarp to be the suture, or rift boundary, between the older crystalline basement on the mesa and the younger metasedimentary basement in the Imperial Valley. (7) On a contour map of reduced travel time from our most widely recorded shot point, subtle patches of early arrivals among otherwise late ar...
Abstract. New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative P wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of-17% beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of-23% in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities (-15%) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10%. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred.
We have constructed a composite image of the fault systems of the M 6.7 San Fernando (1971) and Northridge (1994), California, earthquakes, using industry reflection and oil test well data in the upper few kilometers of the crust, relocated aftershocks in the seismogenic crust, and LARSE II (Los Angeles Region Seismic Experiment, Phase II) reflection data in the middle and lower crust. In this image, the San Fernando fault system appears to consist of a decollement that extends 50 km northward at a dip of ϳ25؇ from near the surface at the Northridge Hills fault, in the northern San Fernando Valley, to the San Andreas fault in the middle to lower crust. It follows a prominent aseismic reflective zone below and northward of the main-shock hypocenter. Interpreted upward splays off this decollement include the Mission Hills and San Gabriel faults and the two main rupture planes of the San Fernando earthquake, which appear to divide the hanging wall into shingleor wedge-like blocks. In contrast, the fault system for the Northridge earthquake appears simple, at least east of the LARSE II transect, consisting of a fault that extends 20 km southward at a dip of ϳ33؇ from ϳ7 km depth beneath the Santa Susana Mountains, where it abuts the interpreted San Fernando decollement, to ϳ20 km depth beneath the Santa Monica Mountains. It follows a weak aseismic reflective zone below and southward of the mainshock hypocenter. The middle crustal reflective zone along the interpreted San Fernando decollement appears similar to a reflective zone imaged beneath the San Gabriel Mountains along the LARSE I transect, to the east, in that it appears to connect major reverse or thrust faults in the Los Angeles region to the San Andreas fault. However, it differs in having a moderate versus a gentle dip and in containing no mid-crustal bright reflections.
In the absence of drilling, surface-based geophysical methods are necessary to observe fault zones and fault zone physical properties at seismogenic depths. These in situ physical properties can then be used to infer the presence and distribution of fluids along faults, although such observations are by nature indirect and become less exact with greater depth. Multiple observations of a range of such geophysical properties as compressional and shear seismic velocity (Vp and Vs ), Vp/V s ratio (related to Poisson's ratio), resistivity and attenuation in and adjacent to fault zones offer the greatest hope of making inferences of the fault zone geometry, fluids in the fault zone, and fluid reservoirs in the surrounding crust. For simple geometries, fault zone guided waves can provide information on fault zone width and velocities for faults of the order of 200 m wide. To address the question of whether a narrow fault zone can be imaged well enough at depths of seismic rupture to infer the presence of anomalously high fluid/rock ratios, we present synthetic seismic tomography and magnetotelluric examples for an ideal case of a narrow fault zone with a simple geometry, large changes in material properties, and numerous earthquakes within the fault zone. A synthetic 0.5-km wide fault zone with 20% velocity reduction is well imaged using local earthquake tomo•aphy. When sequential velocity inversions are done, the true fault width is found, even to 9 km depth, although the calculated amplitude of the velocity reduction is lower than the actual amplitude. Vp/Vs is as well determined as Vp. Magnetotelluric imaging of a synthetic fault zone shows that a conductive fault zone can be well imaged within the upper 10 km. Further, a narrow (1 km) very low resistivity (3 ohm m) fault core can be imaged within a broad (5 kin) low resistivity (10 ohm m) fault zone, illustrating that regions of a fault containing large quantities of interconnected fluids within a broader, conductive fault zone should be detectable. Thus variations in fluid content and fluid pressure can be inferred from electrical and seismic methods but there will always be uncertainty in these inferences due to the trade-off with other factors, such as intrinsic variations in porosity, mineralogy, and pore geometry. The best approach is combined modeling of varied seismic and electrical data. 1988]. Within the fault zone however, slip may be localized ion leave from U.S. Geological Survey, Paper number 94JB03256. 0148-0227/95/94JB.03256505.00 within fault cores less than tens of centimeters thick [Chester et al., 1993]. The fluid will generally be water or brine, although in the deep crust CO2-rich fluids may exist under certain conditions [Fyfe et al., 1978]. The combination of fractures, breccia, clay, and cataclasites in the fault zone and the potential presence of fluids at high pore pressures should produce large contrasts in observable geophysical properties. However, the narrow width of the anomalous zone makes sensing with surface geophysical methods diff...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.