Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here, we used environmental sampling and isolation to assemble a dataset of 1962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the USA, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon-substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and
Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here we used environmental sampling and isolation to assemble a dataset of 1,962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the US, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon - substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and isolation temperature associations reflect the ecological diversity of and niche partitioning by yeast taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.