Plasmodium falciparum can now be maintained in continuous culture in human erythrocytes incubated at 38 degrees C in RPMI 1640 medium with human serum under an atmosphere with 7 percent carbon dioxide and low oxygen (1 or 5 percent). The original parasite material, derived from an infected Aotus trivirgatus monkey, was diluted more than 100 million times by the addition of human erythrocytes at 3- or 4-day intervals. The parasites continued to reproduce in their normal asexual cycle of approximately 48 hours but were no longer highly synchronous. The have remained infective to Aotus.
Previous kinetic studies have identified a high-affinity (S)-warfarin 7-hydroxylase present in human liver microsomes which appears to be responsible for the termination of warfarin's biological activity. Inhibition of the formation of (S)-7-hydroxywarfarin, the inactive, major metabolite of racemic warfarin in humans, is known to be the cause of several of the drug interactions experienced clinically upon coadministration of warfarin with other therapeutic agents. In order to identify the specific form(s) of human liver cytochrome P-450 involved in this particular toxicity, we have determined the metabolic profiles of 11 human cytochrome P-450 forms expressed in HepG2 cells toward both (R)- and (S)-warfarin. Of the 11 forms examined only 2C9 displayed the regioselectivity and stereoselectivity appropriate for the high-affinity human liver microsomal (S)-7-hydroxylase. We further compared Michaelis-Menten and sulfaphenazole inhibition constants for (S)-warfarin 7-hydroxylation catalyzed by cDNA-expressed 2C9 and by human liver microsomes. Similar kinetic constants were obtained for each enzyme source. It is concluded that 2C9 is likely to be a principal form of human liver P-450 which modulates the in vivo anticoagulant activity of the drug. It is further concluded that those drug interactions with warfarin that arise as a result of decreased clearance of the biologically more potent S-enantiomer may have as their common basis the inhibition of P-450 2C9.
Of several furanocoumarins [5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP), 5-hydroxypsoralen (5-OH-P), 8-hydroxypsoralen (8-OH-P), 4',5'-dihydro-8-MOP (DH-8-MOP), and psoralen (P)] tested as mechanism-based inactivators (MBIs) of purified reconstituted cytochrome P450 (P450) 2B1, 8-MOP was found to be the most potent (KI, kinact, and partition ratio of 2.9 microM, 0.34 min-1, and 1.3, respectively). The inactivation was not prevented by reactive oxygen species scavengers or nucleophilic trapping agents and proceeded with a decrease in P450 spectral content. Liquid chromatography (LC) separation of the reconstituted enzyme mixture, followed by liquid scintillation counting, indicated that [14C]-8-MOP binding was specific to the apoprotein of P450 2B1 with a binding stoichiometry of 0.7:1. The major metabolites formed by P450 2B1 from the furanocoumarins that were MBIs were characterized by LC electrospray ionization tandem mass spectrometry (ESI-MS/MS) as dihydro diols. Results from H218O incorporation experiments supported initial oxidation of 8-MOP and P to an epoxide which can react with some nucleophilic active site residue and inactivate the enzyme or partition to a dihydro diol metabolite by hydrolytic ring opening. On the other hand, 5-MOP was converted to an epoxide or gamma-keto enal intermediate prior to inactivation or dihydro diol formation. Comparison of the ESI mass spectra of P450 2B1 and furanocoumarin exposed P450 2B1, indicated a mass difference consistent with the covalent addition of a furanoepoxide to P450 2B1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.