In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit
Nitrogen-vacancy (NV) centers in millimeter-scale diamond samples were produced by irradiation and subsequent annealing under varied conditions. The optical and spin relaxation properties of these samples were characterized using confocal microscopy, visible and infrared absorption, and optically detected magnetic resonance. The sample with the highest NV concentration, approximately 16 ppm (2.8 × 10 18 cm −3 ), was prepared with no observable traces of neutrally-charged vacancy defects. The eective transverse spin-relaxation time for this sample was T * 2 = 118(48) ns, predominately limited by residual paramagnetic nitrogen which was determined to have a concentration of 49(7) ppm. Under ideal conditions, the shot-noise limited sensitivity is projected to be ∼ 150 fT/ √ Hz for a 100 µm-scale magnetometer based on this sample. Other samples with NV concentrations from .007 to 12 ppm and eective relaxation times ranging from 27 to over 291 ns were prepared and characterized.
Stable topological defects of light (pseudo)scalar fields can contribute to the Universe's dark energy and dark matter. Currently, the combination of gravitational and cosmological constraints provides the best limits on such a possibility. We take an example of domain walls generated by an axionlike field with a coupling to the spins of standard-model particles and show that, if the galactic environment contains a network of such walls, terrestrial experiments aimed at the detection of wall-crossing events are realistic. In particular, a geographically separated but time-synchronized network of sensitive atomic magnetometers can detect a wall crossing and probe a range of model parameters currently unconstrained by astrophysical observations and gravitational experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.