Ravulizumab (ALXN1210), a new complement C5 inhibitor, provides immediate, complete, and sustained C5 inhibition. This phase 3, open-label study assessed the noninferiority of ravulizumab to eculizumab in complement inhibitor–naive adults with paroxysmal nocturnal hemoglobinuria (PNH). Patients with lactate dehydrogenase (LDH) ≥1.5 times the upper limit of normal and at least 1 PNH symptom were randomized 1:1 to receive ravulizumab or eculizumab for 183 days (N = 246). Coprimary efficacy end points were proportion of patients remaining transfusion-free and LDH normalization. Secondary end points were percent change from baseline in LDH, change from baseline in Functional Assessment of Chronic Illness Therapy (FACIT)–Fatigue score, proportion of patients with breakthrough hemolysis, stabilized hemoglobin, and change in serum free C5. Ravulizumab was noninferior to eculizumab for both coprimary and all key secondary end points (Pinf < .0001): transfusion avoidance (73.6% vs 66.1%; difference of 6.8% [95% confidence interval (CI), −4.66, 18.14]), LDH normalization (53.6% vs 49.4%; odds ratio, 1.19 [0.80, 1.77]), percent reduction in LDH (−76.8% vs −76.0%; difference [95% CI], −0.83% [−5.21, 3.56]), change in FACIT-Fatigue score (7.07 vs 6.40; difference [95% CI], 0.67 [−1.21, 2.55]), breakthrough hemolysis (4.0% vs 10.7%; difference [95% CI], −6.7% [−14.21, 0.18]), and stabilized hemoglobin (68.0% vs 64.5%; difference [95% CI], 2.9 [−8.80, 14.64]). The safety and tolerability of ravulizumab and eculizumab were similar; no meningococcal infections occurred. In conclusion, ravulizumab given every 8 weeks achieved noninferiority compared with eculizumab given every 2 weeks for all efficacy end points, with a similar safety profile. This trial was registered at www.clinicaltrials.gov as #NCT02946463.
Recent data suggest that under certain conditions, various metal cations are released from dental alloys. These ions may produce adverse effects in various cell types in vivo. In this study, the cytopathogenic effects of 13 metal cations on murine L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells were analyzed in vitro. Several metal cations (dose range, from 0.0033 to 1.0 mmol/L) were found to induce dose-dependent inhibition of 3H-thymidine incorporation into cultured fibroblasts. The rank order of potency (lowest observed effect level, LOEL) for L-929 fibroblasts was: Ag+ > Pt4+ > Co2+ > In3+ > Ga3+ > Au3+ > Cu2+ > Ni2+ > Zn2+ > Pd2+ > Mo5+ > Sn2+ > Cr2+. A similar rank order of potency was obtained for primary human gingival fibroblasts: Pt4+ > Ag+ > Au3+ > In3+ > Ga3+ > Ni2+ > Co2+ > Zn2+ > Cu2+ > Cr2+ > Pd2+ > Mo5+ > Sn2+. In primary human mast cells, Ag+ and Au3+ caused dose-dependent toxic histamine release, whereas the other metal cations were ineffective over the dose range tested. To investigate the mechanism of metal cation-induced effects, we performed DNA as well as electron microscopic analyses on cultured fibroblasts. Both the DNA pattern and the ultrastructure of L-929 cells and gingival fibroblasts after exposure to cytopathogenic metal cations revealed signs of necrosis but no signs of apoptosis. Together, our data provide evidence that various metal cations produce dose-dependent cytopathogenic effects in distinct cell types, including human gingival fibroblasts and human tissue mast cells.(ABSTRACT TRUNCATED AT 250 WORDS)
SUMMARYMast cells (MC), blood basophils (Ba) and moncoytes (Mo) are of haemopoietic origin. Lineagerelationships and transdifferentiation between MC and Mo, or MC and Ba, have been considered, based on common expression of antigens. In this study, comparative phenotypic analyses on MC, Ba and Mo and on respective cell lines were performed using monoclonal antibodies (mAb) to previously defined and novel CD antigens (CD1-130). By cluster analysis, the overall (all 130 CD) phenotypic relationships (given as similarity indices, SI), between primary cells (MC, Ba and Mo) and corresponding cell lines (HMC-1, KU-812, U937) were 0 . 716, 0 . 779 and 0 . 757, respectively. When primary cells were compared, lower SI values were found (MC versus Ba, 0 . 509; MC versus Mo, 0 . 625; Mo versus Ba, 0 . 698). More distant relationships were found between MC versus Ba and MC versus Mo, compared with Ba versus Mo, for adhesion receptor (R)-, complement R-and cytokine R profiles. Analysis of cytokine R revealed most significant dissimilarities between MC versus Ba and MC versus Mo (SI < 0 . 2). Moreover, in contrast to other CD subgroups and other lineages, MC and HMC-1 differed from each other in cytokine R expression (SI 0 . 286). Cytokine R detectable on HMC-1 but not MC were granulocyte-macrophage colony-stimulating factor (GM-CSFR)a(CD116), CD40, Apo-1/ FAS(CD95) and gp130(CD130). Cytokine R detectable on Ba but not MC, were interleukin-3 (IL-3)Ra(CD123), IL-1RII(CD121b), IL-2Ra(CD25) and CD40. In summary, MC, Ba and Mo display a unique CD profile with MC being the most distantly related cell. The most significant mismatch within a given lineage is the loss of cytokine R on mature MC as compared with normal myeloid progenitors and HMC-1 cells.
Pathological erythropoiesis with consequent anemia is a leading cause of symptomatic morbidity in internal medicine. The etiologies of anemia are complex and include reactive as well as neoplastic conditions. Clonal expansion of erythroid cells in the bone marrow may result in peripheral erythrocytosis and polycythemia but can also result in anemia when clonal cells are dysplastic and have a maturation arrest that leads to apoptosis and hinders migration, a constellation typically seen in the myelodysplastic syndromes. Rarely, clonal expansion of immature erythroid blasts results in a clinical picture resembling erythroid leukemia. Although several mechanisms underlying normal and abnormal erythropoiesis and the pathogenesis of related disorders have been deciphered in recent years, little is known about specific markers and targets through which prognosis and therapy could be improved in anemic or polycythemic patients. In order to discuss new markers, targets and novel therapeutic approaches in erythroid disorders and the related pathologies, a workshop was organized in Vienna in April 2017. The outcomes of this workshop are summarized in this review, which includes a discussion of new diagnostic and prognostic markers, the updated WHO classification, and an overview of new drugs used to stimulate or to interfere with erythropoiesis in various neoplastic and reactive conditions. The use and usefulness of established and novel erythropoiesis-stimulating agents for various indications, including myelodysplastic syndromes and other neoplasms, are also discussed.
Vascular adverse events (VAE) are an emerging problem in patients with chronic myeloid leukemia (CML) receiving second-generation BCR-ABL1 tyrosine kinase inhibitors (TKI). Relevant VAE comprise peripheral, cerebral, and coronary artery changes in patients receiving nilotinib, venous and arterial occlusive events during ponatinib therapy, and pulmonary hypertension in patients receiving dasatinib. Although each TKI binds to a unique profile of molecular targets in leukemic cells and vascular cells, the exact etiology of drug-induced vasculopathies remains uncertain. Recent data suggest that predisposing molecular factors, pre-existing cardiovascular risk factors as well as certain comorbidities contribute to the etiology of VAE in these patients. In addition, direct effects of these TKI on vascular endothelial cells have been demonstrated and are considered to contribute essentially to VAE evolution. In the current article, we discuss mechanisms underlying the occurrence of VAE in TKI-treated patients with CML, with special emphasis on vascular and perivascular target cells and involved molecular (vascular) targets of VAE-triggering TKI. In addition, we discuss optimal patient selection and drug selection through which the risk of occurrence of cardiovascular events can hopefully be minimized while maintaining optimal anti-leukemic effects in CML, thereby following the principles of personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.