Advances in plant biotechnology provide various means to improve crop productivity and greatly contributing to sustainable agriculture. A significant advance in plant biotechnology has been the availability of novel synthetic promoters for precise spatial and temporal control of transgene expression. In this article, we review the development of various synthetic promotors and the rise of their use over the last several decades for regulating the transcription of various transgenes. Similarly, we provided a brief description of the structure and scope of synthetic promoters and the engineering of their cis-regulatory elements for different targets. Moreover, the functional characteristics of different synthetic promoters, their modes of regulating the expression of candidate genes in response to different conditions, and the resulting plant trait improvements reported in the past decade are discussed.
Some plant growth-promoting bacteria encode for 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which facilitates plant growth and development by lowering the level of stress ethylene under waterlogged conditions. The substrate ACC is the immediate precursor for ethylene synthesis in plants; while bacterial ACC deaminase hydrolyzes this compound into α-ketobutyrate and ammonia to mitigate the adverse effects of the stress caused by ethylene exposure. Here, the structure and function of ACC deaminase, ethylene biosynthesis and waterlogging response, waterlogging and its consequences, role of bacterial ACC deaminase under waterlogged conditions, and effect of this enzyme on terrestrial and riparian plants are discussed.
Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120 function as transcriptional activators of anthocyanin accumulation in both Arabidopsis and poplar.
Self-controlled feedback on a variety of tasks are well established as effective means of facilitating motor skill learning. This study assessed the effects of self-controlled feedback on the performance of a serial motor skill. The task was to learn the sequence of 18 movements that make up the Taekwondo Poomsae Taegeuk first, which is the first beginner's practice form learned in this martial art. Twenty-four novice female participants (M age=27.2 yr., SD=1.8) were divided into two groups. All participants performed 16 trials in 4 blocks of the acquisition phase and 20 hr. later, 8 trials in 2 blocks of the retention phase. The self-controlled feedback group had significantly higher performance compared to the yoked-feedback group with regard to acquisition and retention. The results of this study may contribute to the literature regarding feedback by extending the usefulness of self-controlled feedback for learning a serial skill.
We conducted a case-control study to investigate whether vascular endothelial growth factor (VEGF −2578, −1154, −634, and 936) and kinase insert domain containing receptor (KDR −604, 1192, and 1719) polymorphisms are associated with moyamoya disease. Korean patients with moyamoya disease (n = 107, mean age, 20.9±15.9 years; 66.4% female) and 243 healthy control subjects (mean age, 23.0±16.1 years; 56.8% female) were included. The subjects were divided into pediatric and adult groups. Among the 64 surgical patients, we evaluated collateral vessel formation after 2 years and divided patients into good (collateral grade A) or poor (collateral grade B and C) groups. The frequencies and distributions of four VEGF (−2578, −1154, −634, and 936) and KDR (−604, 1192, and 1719) polymorphisms were assessed from patients with moyamoya disease and compared to the control group. No differences were observed in VEGF −2578, −1154, −634, and 936 or KDR −604, 1192, and 1719 polymorphisms between the control group and moyamoya disease group. However, we found the −634CC genotype occurred less frequently in the pediatric moyamoya group (p = 0.040) whereas the KDR −604C/1192A/1719T haplotype increased the risk of pediatric moyamoya (p = 0.024). Patients with the CC genotype of VEGF −634 had better collateral vessel formation after surgery. Our results suggest that the VEGF −634G allele is associated with pediatric moyamoya disease and poor collateral vessel formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.