Slums are urban areas with insufficient public services and access to sanitation. Evidence-based selection of sustainable sanitation options is critical for addressing the sanitation crisis in slums. This mixed methods study was conducted in Jimma Town, southwest Ethiopia, to assess sanitation status and prioritize sustainable sanitation options for slums. The study was done in 2 phases: quantitative and qualitative. The quantitative cross-sectional household survey aimed to assess sanitation status and the qualitative exploratory method to explore alternative sanitation options and prioritize sustainable alternatives. A total of 310 households were chosen using systematic random sampling methods, of which 302 participated. Data was gathered through interviews, which were supplemented with questionnaires and observation checklists, and 2 focus group discussions (FGD) were held. First, FGD was with expertise in the sanitation sector, and the second was with community members. The state of sanitation was summarized, and multi-criteria analysis (MCA) was used to prioritize sustainable sanitation options. According to our findings, 68% of households had access to improved facilities, and 22.5% didn’t have any form of toilet facility. About 7 off-site and on-site user interface sanitation technology options were considered in the selection of alternative sanitation technologies, and each option was evaluated against 17 health, economic, social, technical, and environmental criteria. In the final analysis, the options with the highest scores for the setting were flush to septic tanks, compost toilets, and biogas toilets. Mobilizing such a promising sanitation option is recommended for future interventions.
Increasing quantities of domestic and imported waste electronic and electric equipment (WEEE) stimulates a rapid development of informal recycling activities in developing countries. This economically driven recycling, oftentimes based on open burning or acid-base treatment, followed by open dumping of the residues, does not usually fit environmental and public health requirements. For the underlying research, the hypothesis was formulated that the specific conditions of dumping of residues from informal recycling activities are enhancing the leaching of hazardous substances into the ground-or surface water. Hence, this paper aims at identifying major influencing factors that affect leaching behaviour of heavy metals from WEEE components and assess environmental impact of informal WEEE recycling and dumping practice. A set of leaching tests were carried out with a homogenized sample of printed circuit boards from personal computers. The results of the study show that the concentrations of Pb, Zn, Cd, Ni and Cu leached from the test material, is higher than the Dutch standard of heavy metals reference value in soil. In addition, under the toxicity characteristics leaching procedure (TCLP) extraction test, 6879 ± 1342 mg/kg dissolved organic carbon (DOC) was measured. It was also confirmed that the leachability of Pb and Cd exceeds the regulatory limit of TCLP. Lead was the predominant heavy metal to leach from the waste material and 5617±739 mg/kg Pb was released by the standard pH-controlled leaching test. The column leaching test results suggested that high amount concentrations of heavy metals released were washed out before a liquid to solid (L/S) ratios of 5. Similarly, from the column leaching trend 99.3% of DOC was leached in the lower L/S ratios of (upto L/S ratio of 2). The standard pH controlled test results indicated that heavy metals were highly mobile in the acidic pH ranges.
Most countries around the world have experienced water scarcity in recent decades as fresh water consumption has increased. However, untreated wastewater is routinely discharged into the environment, particularly in developing countries, where it causes widespread environmental and public health problems. The majority of wastewater treatment method publications are heavily focused on high-income country applications and, in most cases, cannot be transferred to low and middle-income countries. An experimental study was conducted to evaluate the performance efficiency of pilot-scale physicochemical and biological treatment methods for the treatment of household greywater in Jimma, Ethiopia. During the experiment, grab samples of greywater were taken from the combined treatment system’s influent and effluent every 7 days for 5 weeks and analyzed within 24–48 hours. Temperature, DO, EC, turbidity, TDS, and pH were measured on-site, while BOD, COD, TSS, TP, TN PO4−3-P, NO3-N, NH4-N, Cl−, and FC were determined in the laboratory. During the five-week pilot-scale combined treatment system monitoring period, the combined experimental and control system’s mean percentage reduction efficiencies were as follows: turbidity (97.2%, 92%), TSS (99.2%, 97.2%), BOD5 (94%, 57.4%), COD (91.6%, 54.7%), chloride (61%, 35%), TN (68.24, 42.7%), TP (71.6%, 38.7%), and FC (90%, 71.1%), respectively. Similarly, the combined experimental and control systems reduced PO4−3-P (12.5 ± 3 mg/L), NO3-N (4.5 ± 3 mg/L), and NH4-N (10.19 ± 2.6 mg/L) to PO4−3-P (3.5 ± 2.6 mg/L, 7.5 ± 1.6 mg/L), NO3-N (0.8 ± 0.5, 3.6 ± 2.3 mg/L), and NH4-N (7 ± 2.9 mg/L, 15.9 ± 3.9 mg/L), respectively. From the biofiltration and horizontal subsurface flow constructed wetland combined systems, the experimental combined technology emerged as the best performing greywater treatment system, exhibiting remarkably higher pollutant removal efficiencies. In conclusion, the combined biofiltration and horizontal subsurface flow constructed wetland treatment system can be the technology of choice in low-income countries, particularly those with tropical climates.
Fluoride is a concern for human health at high concentrations, but it is also a valuable compound with multiple applications. Thus, having a system that gives the opportunity to remove and recover this valuable element from water is highly interesting. Reverse osmosis (RO) is a promising technology in the removal of fluoride from water. Nevertheless, the residual retentate highly concentrated in fluoride is still a concern. The aim of this study was to evaluate the performance of an integrated process consisting of RO and membrane crystallization to remove fluoride from water and to recover it as a pure fluoride salt. Pure water permeability and fluoride rejection of a commercial RO membrane was tested under different conditions. In addition, the performance of an osmotic membrane crystallization setup was evaluated, considering the effect caused by the flow rates and the concentration of both the feed and the osmotic solution on the mass transfer coefficient. The crystallization process allowed the production of pure NaF crystals with octahedral morphology with a face-centered cubic crystal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.