Magnetically confined laser-induced breakdown spectroscopy was investigated by studying the optical emission from laser-induced plasma plumes expanding across an external transverse magnetic field. KrF excimer laser pulses with a pulse duration of 23 ns and a wavelength of 248 nm were used to produce plasmas from Al, Cu, and Co targets. Various optical emission lines obtained from Al and Cu targets show an obvious enhancement in the intensity of optical emission when a magnetic field of ϳ0.8 T is applied, while the optical emission lines from Co targets show a decrease in the optical emission intensity. The enhancement factors of optical emission lines were measured to be around 2 for the Al and Mn ͑impurity͒ lines from Al targets, and 6-8 for Cu lines from Cu targets. Temporal evolution of the optical emission lines from the Al samples shows a maximum enhancement in emission intensity at time delays of 8 -20 s after the incident laser pulse, while from the Cu targets it shows a continuous enhancement at time delays of 3 -20 s after the pulse. The enhancement in the optical emission from the Al and Cu plasmas was presumably due to the increase in the effective plasma density as a result of magnetic confinement. The decrease in the emission intensity from the Co plasmas was suggested to be due to the decrease of effective plasma density as a result of the magnetic force.
The cylindrical confinement of laser-induced plasmas in round pipes has been investigated by optical emission spectra and fast imaging. An obvious enhancement in the emission intensity of Al atomic lines was observed when a round pipe was placed to confine the laser-induced Al plasmas. The enhancement factor for the emission intensities of the Al atomic lines was measured to be around 9 at a time delay of 12μs when the pipe diameter is 10.8mm. Assuming local thermodynamic equilibrium conditions, the plasma temperatures are estimated to be in the range from 4000to5800K. It shows that the plasma temperature increased by around 1000K when the cylindrical confinement was applied. Images of the laser-induced Al plasmas show that the plasmas were compressed into a smaller volume with a pipe presented. The spatial-confinement effects are attributed to the reflection and compression of the shock wave.
Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10(6) (ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry.
The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.
Detection of uranium in solids by using laser-induced breakdown spectroscopy has been investigated in combination with laser-induced fluorescence. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected by using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.0 nm from U II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.