Implementing new online adaptive radiation therapy technologies is challenging because extra clinical resources are required particularly expert contour review. Here, we provide the first assessment of Varian's Ethos™ adaptive platform for prostate cancer using no manual edits after auto-segmentation to minimize this impact on clinical efficiency. Methods: Twenty-five prostate patients previously treated at our clinic were re-planned using an Ethos™ emulator. Clinical target volumes (CTV) included intact prostate and proximal seminal vesicles. The following clinical margins were used: 3 mm posterior, 5 mm left/right/anterior, and 7 mm superior/inferior. Adapted plans were calculated for 10 fractions per patient using Ethos's autosegmentation and auto-planning workflow without manual contouring edits. Doses and auto-segmented structures were exported to our clinical treatment planning system where contours were modified as needed for all 250 CTVs and organs-at-risk. Dose metrics from adapted plans were compared to unadapted plans to evaluate CTV and OAR dose changes. Results: Overall 96% of fractions required auto-segmentation edits, although corrections were generally minor (<10% of the volume for 70% of CTVs, 88% of bladders, and 90% of rectums). However, for one patient the autosegmented CTV failed to include the superior portion of prostate that extended into the bladder at all 10 fractions resulting in under-contouring of the CTV by 31.3% ± 6.7%. For the 24 patients with minor auto-segmentation corrections, adaptation improved CTV D98% by 2.9% ± 5.3%. For non-adapted fractions where bladder or rectum V90% exceeded clinical thresholds, adaptation reduced them by 13.1% ± 1.0% and 6.5% ± 7.3%, respectively. Conclusion: For most patients, Ethos's online adaptive radiation therapy workflow improved CTV D98% and reduced normal tissue dose when structures would otherwise exceed clinical thresholds, even without time-consuming manual edits. However, for one in 25 patients, large contour edits were required and thus scrutiny of the daily auto-segmentation is necessary and not all patients will be good candidates for adaptation.
Purpose
Evaluate a cone‐beam computed tomography (CBCT)‐based daily adaptive platform in cervical cancer for multiple endpoints: (1) physics contouring accuracy of daily CTVs, (2) CTV coverage with adapted plans and reduced PTV margins versus non‐adapted plans with standard‐of‐care (SOC) margins, (3) dosimetric improvements to CTV and organs‐at‐risk (OARs), and (4) on‐couch time.
Methods and materials
Using a Varian Ethos™ emulator and KV‐CBCT scans, we simulated the doses 15 retrospective cervical cancer patients would have received with/without online adaptation for five fractions. We compared contours and doses from SOC plans (5–15 mm CTV‐to‐PTV margins) to adapted plans (3 mm margins). Auto‐segmented CTVs and OARs were reviewed and edited by trained physicists. Physics‐edited targets were evaluated by an oncologist. Time spent reviewing and editing auto‐segmented structures was recorded. Metrics from the CTV (D99%), bowel (V45Gy, V40Gy), bladder (D50%), and rectum (D50%) were compared.
Results
The physician approved the physics‐edited CTVs for 55/75 fractions; 16/75 required reductions, and 4/75 required CTV expansions. CTVs were encapsulated by unadapted, SOC PTVs for 56/75 (72%) fractions—representative of current clinical practice. CTVs were completely covered by adapted 3 mm PTVs for 71/75 (94.6%) fractions. CTV D99% values for adapted plans were comparable to non‐adapted SOC plans (average difference of −0.9%), while all OAR metrics improved with adaptation. Specifically, bowel V45Gy and V40Gy decreased on average by 87.6 and 109.4 cc, while bladder and rectum D50% decreased by 37.7% and 35.8%, respectively. The time required for contouring and calculating an adaptive plan for 65/75 fractions was less than 20 min (range: 1–29 min).
Conclusions
Improved dose metrics with daily adaption could translate to reduced toxicity while maintaining tumor control. Training physicists to perform contouring edits could minimize the time physicians are required at adaptive sessions improving clinical efficiency. All emulated adaptive sessions were completed within 30 min however extra time will be required for patient setup, image acquisition, and treatment delivery.
Online adaptive radiotherapy platforms present a unique challenge for commissioning as guidance is lacking and specialized adaptive equipment, such as deformable phantoms, are rare. We designed a novel adaptive commissioning process consisting of end‐to‐end tests using standard clinical resources. These tests were designed to simulate anatomical changes regularly observed at patient treatments. The test results will inform users of the magnitude of uncertainty from on‐treatment changes during the adaptive workflow and the limitations of their systems. We implemented these tests for the cone‐beam computed tomography (CT)‐based Varian Ethos online adaptive platform.
Many adaptive platforms perform online dose calculation on a synthetic CT (synCT). To assess the impact of the synCT generation and online dose calculation on dosimetric accuracy, we conducted end‐to‐end tests using commonly available equipment: a CIRS IMRT Thorax phantom, PinPoint ionization chamber, Gafchromic film, and bolus. Four clinical scenarios were evaluated: weight gain and weight loss were simulated by adding and removing bolus, internal target shifts were simulated by editing the CTV during the adaptive workflow to displace it, and changes in gas were simulated by removing and reinserting rods in varying phantom locations. The effect of overriding gas pockets during planning was also assessed.
All point dose measurements agreed within 2.7% of the calculated dose, with one exception: a scenario simulating gas present in the planning CT, not overridden during planning, and dissipating at treatment. Relative film measurements passed gamma analysis (3%/3 mm criteria) for all scenarios. Our process validated the Ethos dose calculation for online adapted treatment plans. Based on our results, we made several recommendations for our clinical adaptive workflow. This commissioning process used commonly available equipment and, therefore, can be applied in other clinics for their respective online adaptive platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.