This paper presents the use of Ca2Mn2O5 as an oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction (OER) in alkaline media. Phase-pure Ca2Mn2O5 was made under mild reaction temperatures through a reductive annealing method. This oxygen deficient perovskite can catalyze the generation of oxygen at ~1.50 V versus (vs) reversible hydrogen electrode (RHE) electrochemically, and reach an OER mass activity of 30.1 A/g at 1.70 V (vs RHE). In comparison to the perovskite CaMnO3, Ca2Mn2O5 shows higher OER activities. The molecular level oxygen vacancies and high spin electron configuration on manganese in the crystal structures are likely the contributing factors for the enhanced performance. This work demonstrates that oxygen-deficient perovskite, A2B2O5, is a new class of high performance electrocatalyst for those reactions that involve active oxygen intermediates, such as reduction of oxygen and OER in water splitting.
Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (YRuO) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates YRuO electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru-O bond than RuO, highlighting the effect of yttrium on the enhancement in stability. The YRuO pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.
Development of alternative energy sources is crucial to tackle challenges encountered by the growing global energy demand. Hydrogen-fuel, a promising way to store energy produced from renewable power sources, can be converted into electrical energy at high efficiency via direct electrochemical conversion in fuel cells, releasing water as the sole byproduct. One important drawback to current fuel-cell technology is the high content of platinum-group-metal (PGM) electrocatalysts required to perform the sluggish oxygen reduction reaction (ORR). Addressing this challenge, remarkable progress has been made in the development of low-cost PGM-free electrocatalysts synthesized from inexpensive, earth-abundant, and easily sourced materials such as iron, nitrogen, and carbon (Fe-N-This article is protected by copyright. All rights reserved. C). PGM-free Fe-N-C electrocatalysts now exhibit ORR activities approaching that of PGM electrocatalysts but at a fraction of the cost, promising to significantly reduce overall fuel-cell technology costs. Herein, recent developments in PGM-free electrocatalysis, demonstrating increased fuel-cell performance, as well as efforts aimed at understanding the key limiting factor, i.e., the nature of the PGM-free active site, are summarized. Further improvements will be accomplished through the controlled and/or rationally designed synthesis of materials with higher active-site densities, while at the same time establishing methods to mitigate catalyst degradation.
When nanoparticles become small (ca. <5 nm), surface stress becomes significant and generates strain that results in a change of surface structures. In this regard, the surface lattice of nanoparticles can be engineered to create strains or other structural changes with atomic positions away from the normal lattice points. Such changes impact the electronic and catalytic properties of nanoparticles. Recently, several groups have reported the change of catalytic and electrocatalytic properties of bimetallic nanoparticles. In this tutorial review, we discuss the principles related to lattice strain and other distorted structures, and the catalytic properties of bimetallic nanostructures.
This paper describes the synthesis, formation mechanism, and mechanical property of multilayered ultrathin Pd nanosheets. An anisotropic, Hanoi Tower-like assembly of Pd nanosheets was identified by transmission electron microscopy and atomic force microscopy (AFM). These nanosheets may contain ultrathin Pd layers, down to single unit cell thickness. Selected area electron diffraction and scanning transmission electron microscopy data show the interconnected atomically thick layers stacking vertically with rotational mismatches, resulting in unique diffractions and Moiré patterns. Density functional theory (DFT) calculation with van der Waals correction (DFT+vdW) shows the adsorption of Pd4(CO)4(OAc)4 on Pd(110) surface (Ead = -5.68 eV) is much stronger than that on Pd(100) (Ead = -4.72 eV) or on Pd(111) (Ead = -3.80 eV). The adsorption strength of this Pd complex is significantly stronger than that of CO on the same Pd surfaces. The DFT+vdW calculation results suggest a new mechanism for the observed anisotropic growth of nanosheets with unusually high aspect ratio, in which the competitive adsorptions between Pd4(CO)4(OAc)4 complex and CO on various surfaces result in a favored growth along the ⟨110⟩ directions and inhibition along ⟨111⟩ directions. The mechanical property of these multilayered Pd nanosheets was studied using AFM and nanoindentation techniques, which indicate multilayered nanosheets show more plastic deformation than the bulk in response to an applied force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.