The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus on agreeable slip rates along much of its length and the slip rate gradient along the eastern part, both of which play critical roles in a range of models for the eastward extrusion and thickened crust of the Tibetan Plateau. New slip rates have been determined at sites along the eastern part of the Kunlun Fault by dating deposits and measuring atop displaced fluvial terrace risers. Field investigations and interpretation of satellite images reveal geometrical features of the fault and the late Quaternary offset, new earthquake ruptures and surface-rupturing segmentation, from which long-term slip rates and earthquake recurrence intervals on the fault are estimated. The tectonic geomorphology method has determined that the long-term horizontal slip rates on the Tuosuohu, Maqin and Maqu segments from west to east are 11.2±1, 9.3±2, and 4.9±1.3 mm/a while their vertical slip rates are 1.2±0.2, 0.7±0.1, and 0.3 mm/a in the late Quaternary. Results indicate that the slip rates regularly decrease along the eastern ~300 km of the fault from >10 to <5 mm/a. This is consistent with the decrease in the gradient such that at the slip rate break point is at the triple point intersection with the transverse fault, which in turn is transformed to the Awancang Fault. The vector decomposition for this tectonic transformation shows that the western and eastern branches of the Awancang Fault fit the slip-partitioning mode. The slip rate of the southwestern wall is 4.6 mm/a relative to the northeastern wall and the slip direction is 112.1°. The mid-eastern part of the Kunlun Fault can be divided into three independent segments by the A'nyêmaqên double restraining bend and the Xigongzhou intersection zone, which compose the surface rupture segmentation indicators for themselves as well as the ending point of the 1937 M7.5 Tuosuohu earthquake. The average recurrence interval of the characteristic earthquakes are estimated to be 500-1000 a, respectively. The latest earthquake ruptures occurred in AD 1937 on the western Tuosuohu segment, as compared to ~514-534 a BP on the Maqin segment, and ~1055 to 1524 a BP on the Maqu segment. This may indicate a unidirectional migration for surface rupturing earthquakes along the mid-eastern Kunlun Fault related to stress triggered between these segments. Meanwhile, the long-term slip rate is obtained through the single event offset and the recurrence interval, which turn out to be the same results as those determined by the offset tectonic geomorphology method, i.e., the decreasing gradient corresponds to the geometrical bending and the fault's intersection with the transverse fault. Therefore, the falling slip rate gradient of the mid-eastern Kunlun Fault is mainly caused by eastward extension of the fault and its intersection with the transverse fault. mid-eastern Kunlun Fault, s...
Hydrocarbon evolution is extremely challenging to determine, both temporally and spatially, in complex tectonic settings. Here we investigate the western margin of the Xuefeng uplift (southern China), which records multiple and protracted tectonic and hydrocarbongeneration events. This timing of initial oil generation is recorded by low-maturity bitumen (type A), which yields an Re-Os bitumen date of ca. 430 Ma, consistent with basin models and a ca. 405 Ma bitumen Rb-Sr date. In contrast, apatite fission-track (AFT) data yield considerably younger dates that reflect the timing and tectonic evolution of the Yanshan orogeny from the northwest (ca. 150 Ma) to the southeast (ca. 70 Ma). The youngest AFT date coincides with the western margin of Xuefeng uplift, where high-maturity bitumen (type B) occurs that yields a ca. 70 Ma Re-Os date. The Re-Os and AFT dates imply that both the last stage of the Yanshan orogeny and, by inference, the cessation of dry gas generation, occurred ca. 70 Ma. The Re-Os data of this study imply that the Re-Os chronometer can aid in constraining the timing of oil generation and secondary and/or more mature hydrocarbon processes (e.g., thermal cracking and/or gas generation) in hydrocarbon systems worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.