SUMMARY We analyzed four families that presented with a similar condition characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy and intractable seizures. We show that recessive mutations in the ASNS gene are responsible for this syndrome. Two of the identified missense mutations dramatically reduce ASNS protein abundance, suggesting that the mutations cause loss of function. Hypomorphic Asns mutant mice have structural brain abnormalities, including enlarged ventricles and reduced cortical thickness, and show deficits in learning and memory mimicking aspects of the patient phenotype. ASNS encodes asparagine synthetase, which catalyzes the synthesis of asparagine from glutamine and aspartate. The neurological impairment resulting from ASNS deficiency may be explained by asparagine depletion in the brain, or by accumulation of aspartate/glutamate leading to enhanced excitability and neuronal damage. Our study thus indicates that asparagine synthesis is essential for the development and function of the brain but not for that of other organs.
Summary Temporal lobe epilepsy is the most common and often devastating form of human epilepsy. The molecular mechanism underlying the development of temporal lobe epilepsy remains largely unknown. Emerging evidence suggests that activation of the BDNF receptor, TrkB, promotes epileptogenesis caused by status epilepticus. We investigated a mouse model in which a brief episode of status epilepticus results in chronic recurrent seizures, anxiety-like behavior, and destruction of hippocampal neurons. We used a chemical-genetic approach to selectively inhibit activation of TrkB. We demonstrate that inhibition of TrkB commencing after status epilepticus and continued for two weeks prevents recurrent seizures, ameliorates anxiety-like behavior, and limits loss of hippocampal neurons when tested weeks to months later. That transient inhibition commencing after status epilepticus can prevent these long-lasting devastating consequences establishes TrkB signaling as an attractive target for developing preventive treatments of epilepsy in humans.
Recent work suggests that limiting the activation of the trkB subtype of neurotrophin receptor inhibits epileptogenesis, but whether or where neurotrophin receptor activation occurs during epileptogenesis is unclear. Because the activation of trk receptors involves the phosphorylation of specific tyrosine residues, the availability of antibodies that selectively recognize the phosphorylated form of trk receptors permits a histochemical assessment of trk receptor activation. In this study the anatomy and time course of trk receptor activation during epileptogenesis were assessed with immunohistochemistry, using a phospho-specific trk antibody. In contrast to the low level of phosphotrk immunoreactivity constitutively expressed in the hippocampus of adult rats, a striking induction of phosphotrk immunoreactivity was evident in the distribution of the mossy fibers after partial kindling or kainate-induced seizures. The anatomic distribution, time course, and threshold for seizure-induced phosphotrk immunoreactivity correspond to the demonstrated pattern of regulation of BDNF expression by seizure activity. These results provide immunohistochemical evidence that trk receptors undergo activation during epileptogenesis and suggest that the mossy fiber pathway is particularly important in the pro-epileptogenic effects of the neurotrophins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.