Radio frequency fingerprint (RF fingerprint) extraction is a technology that can identify the unique radio transmitter at the physical level, using only external feature measurements to match the feature library. RF fingerprint is the reflection of differences between hardware components of transmitters, and it contains rich nonlinear characteristics of internal components within transmitter. RF fingerprint technique has been widely applied to enhance the security of radio frequency communication. In this paper, we propose a new RF fingerprint method based on multidimension permutation entropy. We analyze the generation mechanism of RF fingerprint according to physical structure of radio transmitter. A signal acquisition system is designed to capture the signals to evaluate our method, where signals are generated from the same three Anykey AKDS700 radios. The proposed method can achieve higher classification accuracy than that of the other two steady-state methods, and its performance under different SNR is evaluated from experimental data. The results demonstrate the effectiveness of the proposal.
Fashion outfit recommendation has attracted increasing attentions from online shopping services and fashion communities.Distinct from other scenarios (e.g., social networking or content sharing) which recommend a single item (e.g., a friend or picture) to a user, outfit recommendation predicts user preference on a set of well-matched fashion items.Hence, performing highquality personalized outfit recommendation should satisfy two requirements -1) the nice compatibility of fashion items and 2) the consistence with user preference. However, present works focus mainly on one of the requirements and only consider either user-outfit or outfit-item relationships, thereby easily leading to suboptimal representations and limiting the performance.In this work, we unify two tasks, fashion compatibility modeling and personalized outfit recommendation. Towards this end, we develop a new framework, Hierarchical Fashion Graph Network (HFGN), to model relationships among users, items, and outfits simultaneously. In particular, we construct a hierarchical structure upon user-outfit interactions and outfit-item mappings. We then get inspirations from recent graph neural networks, and employ the embedding propagation on such hierarchical graph, so as to aggregate item information into an outfit representation, and then refine a user's representation via his/her historical outfits. Furthermore, we jointly train these two tasks to optimize these representations. To demonstrate the effectiveness of HFGN, we conduct extensive experiments on a benchmark dataset, and HFGN achieves significant improvements over the state-of-theart compatibility matching models like NGNN [6] and outfit recommenders like FHN [29]. Our code has been released 1 .
Link prediction in complex networks is to estimate the likelihood of two nodes to interact with each other in the future. As this problem has applications in a large number of real systems, many link prediction methods have been proposed. However, the validation of these methods is so far mainly conducted in the assumed noise-free networks. Therefore, we still miss a clear understanding of how the prediction results would be affected if the observed network data is no longer accurate. In this paper, we comprehensively study the robustness of the existing link prediction algorithms in the real networks where some links are missing, fake or swapped with other links. We find that missing links are more destructive than fake and swapped links for prediction accuracy. An index is proposed to quantify the robustness of the link prediction methods. Among the twenty-two studied link prediction methods, we find that though some methods have low prediction accuracy, they tend to perform reliably in the “noisy” environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.