The drag coefficient under tropical cyclones and its dependence on sea states are investigated by combining upper ocean current observations (using EM-APEX floats deployed under five tropical cyclones) and a coupled ocean-wave (Modular Ocean Model 6 - WAVEWATCH III) model. The estimated drag coefficient averaged over all storms is around 2−3×10−3 for wind speeds 25–55 m/s. While the drag coefficient weakly depends on wind speed in this wind speed range, it shows stronger dependence on sea states. In particular, it is significantly reduced when the misalignment angle between the dominant wave direction and the wind direction exceeds about 45°, a feature which is underestimated by current models of sea state dependent drag coefficient. Since the misaligned swell is more common in the far front and in the left front quadrant of the storm (in the Northern Hemisphere), the drag coefficient also tends to be lower in these areas and shows a distinct spatial distribution. Our results therefore support ongoing efforts to develop and implement sea state dependent parameterizations of the drag coefficient in tropical cyclone conditions.
The altimetry wavenumber spectra of sea surface height (SSH) provide a unique dataset for testing of geostrophic turbulence. While SSH spectral slopes of k−11/3 and k−5 are expected from theories and numerical simulations, the altimetry spectra from the original unfiltered and instrument noise–corrected data often are too shallow, falling between k−2 and k−3. In this study, the possibility that the flattened spectral slopes are partly due to contamination by unresolved high-frequency (<10 days) motions is tested. A spatiotemporal filter based on empirical orthogonal function expansion (EOF) is used to remove the temporally incoherent signals. The resulting spectral slopes are much steeper than in the previous studies. Over 70% of the revised global spectral estimates, excluding the tropics, are above k−3. Moreover, in high energy regions like the Gulf Stream and Kuroshio, the spectral slopes are about k−5, which is consistent with the classical quasigeostrophic (QG) turbulence. The spectral slopes are validated with the eddy kinetic energy (EKE) spectra from shipboard acoustic Doppler current profiler (ADCP) measurements in the high and low energy regions.
In this paper, the zonal and meridional sea surface height (SSH) wavenumber spectra are systematically calculated using along-track and gridded altimeter products, and the slopes of the SSH wavenumber spectra over the mesoscale band, which is defined by the characteristic length scale of mesoscale signals, are estimated. The results show that the homogeneous spectral slopes calculated from the along-track and gridded altimeter datasets have a similar spatial pattern, but the spectral slopes from gridded altimeter data are generally steeper than that from the along-track data with an averaged difference of 1.5. Significant differences are found between the zonal and meridional spectra, which suggest that SSH wavenumber spectra are indeed anisotropic. Furthermore, the anisotropy exhibits strong regional contrast: in the equatorial region, the zonal spectrum is steeper than its corresponding meridional spectrum, while in the eastward-flowing high EKE regions the meridional spectrum is steeper than its zonal counterpart. The anisotropy of SSH wavenumber spectral slopes implies that EKE distributes anisotropically in different directions, and this distribution is closely associated with the generation and nonlinear evolution of mesoscale movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.