Evidence of a nonlinear transition from mitigation to suppression of the edge localized mode (ELM) by using resonant magnetic perturbations (RMPs) in the EAST tokamak is presented. This is the first demonstration of ELM suppression with RMPs in slowly rotating plasmas with dominant radio-frequency wave heating. Changes of edge magnetic topology after the transition are indicated by a gradual phase shift in the plasma response field from a linear magneto hydro dynamics modeling result to a vacuum one and a sudden increase of three-dimensional particle flux to the divertor. The transition threshold depends on the spectrum of RMPs and plasma rotation as well as perturbation amplitude. This means that edge topological changes resulting from nonlinear plasma response plays a key role in the suppression of ELM with RMPs. DOI: 10.1103/PhysRevLett.117.115001 Magnetic reconnection and the resultant topological change play an important role in plasma dynamics in both laboratory and space plasma physics research. The formation of an edge stochastic magnetic field caused by resonant magnetic perturbations (RMPs) is believed to be the reason for the suppression of periodic crash events near the plasma edge known as the edge localized mode (ELM) observed in the DIII-D tokamak [1]. The ELM causes transient heat loads to the plasma facing components and may degrade them on the next generation fusion device like ITER [2]. The reduction of free energy in the edge pressure gradient and current because of field stochasticity moves the plasma into a stable regime against the ELM [3]. This successful experiment motivated ELM control using RMPs in many other tokamaks [4][5][6][7]. However, the plasma response effect usually shields the external applied RMPs and may significantly reduce the magnetic field stochasticity [8][9][10][11], which makes this mechanism questionable. Different from topological change, the linear peelinglike magneto hydro dynamics (MHD) response has been found to play an important role in ELM control [12][13][14]. Nonlinear plasma response has been observed in the JET totamak [15]. The possible formation of a magnetic island near the plasma edge [16] with a toroidal Fourier mode number n ¼ 1 during ELM suppression by using n ¼ 2 RMP has been recently observed on DIII-D [17]. However, the key difference between ELM suppression and mitigation and the different roles of linear and nonlinear plasma response on ELM suppression are still not clear.In this Letter, we report the first observation of full ELM suppression using low n RMPs in slowly rotating plasmas with dominant radio-frequency (rf) wave heating, which is potentially important for the application of this method for a future fusion device. This is the first observation of full ELM suppression using RMPs in the medium plasma collisionality regime in EAST, and it expands beyond the previous observations of ELM suppression on DIII-D [1,3] and KSTAR [7]. It is found that not only the formation of a magnetic island near the edge [17] but also a critical leve...
The dynamic features of the low-intermediate-high-(L-I-H) confinement transitions on HL-2A tokamak are presented. Here we report the discovery of two types of limit cycles (dubbed type-Y and type-J), which show opposite temporal ordering between the radial electric field and turbulence intensity. In type-Y, which appears first after an L-I transition, the turbulence grows first, followed by the localized electric field. In contrast, the electric field leads type-J. The turbulence-induced zonal flow and pressure-gradient-induced drift play essential roles in the two types of limit cycles, respectively. The condition of transition between types-Y and -J is studied in terms of the normalized radial electric field. An I-H transition is demonstrated to occur only from type-J.
The features of ion and electron fishbone instabilities have been investigated during neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) on HL-2A. Some new phenomena, such as frequency jumps and V-font-style sweeping, have been presented in the paper. Three kinds of i-fishbones, including hybrid sawtoothfishbone (sawbone), run-on fishbone and classical fishbone, have been identified during NBI. During high power (P ECRH > 0.7 MW) ECRH, the experimental results indicate that the e-fishbone frequencies are higher than those during low power ECRH, and are provided with up-and down-chirping behaviours, and sometimes also with V-font-style sweeping. The periodic mode frequency jumps have also been detected by a soft x-ray array. It is possible to correlate these phenomena with the redistribution of energetic electrons.
A set of in-vessel resonant magnetic perturbation (RMP) coil has been recently installed in EAST. It can generate a range of spectrum, and there is a relatively large window for edge localized mode (ELM) control according to the vacuum field modeling of the edge magnetic island overlapping area. Observation of mitigation and suppression of ELM in slow rotating plasmas during the application of an n = 1 RMP is presented in this paper. Strong ELM mitigation effect is observed in neutral beam injection heating plasmas. The ELM frequency increases by a factor of 5, and the crash amplitude and the particle flux are effectively reduced by a similar factor. Clear density pump-out and magnetic braking effects are observed during the application of RMP. Footprint splitting is observed during ELM mitigation and agrees well with vacuum field modelling. Strong ELM mitigation happens after a second sudden drop of plasma density, which indicates the possible effect due to field penetration of the resonant harmonics near the pedestal top, where the electron perpendicular rotation becomes flat and close to zero after the application of RMP. ELM suppression is achieved in a resonant window during the scan of the n = 1 RMP spectrum in radio-frequency (RF) dominant heating plasmas. The best spectrum for ELM suppression is consistent with the resonant peak of RMP by taking into account of linear magnetohydrodynamics plasma response. There is no mode locking during the application of n = 1 RMP in ELMy H-mode plasmas, although the maximal coil current is applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.