Battery technology has been one of the bottlenecks in electric cars. Whether it is in theory or in practice, the research on battery management is extremely important, especially for battery state-of-charge estimation. In fact, the battery has a strong time-varying and non-linear properties, which are extremely complex. Therefore, accurately estimating the state of charge is a challenging task. This paper reviews various representative patents and papers related to the state of charge estimation methods for an electric vehicle battery. According to their theoretical and experimental characteristics, the estimation methods were classified into three groups: the traditional methods based on the battery experiments, the modern methods based on control theory, and other methods based on the innovative ideas, especially focusing on the algorithms based on control theory. The results imply that the algorithms based on control theory, especially intelligent algorithms, are the focus of research in this field. The future development direction is to establish a rich database, improve hardware technology, come up with a much better battery model, and give full play to the advantages of each algorithm.
In-wheel motor electric vehicles have the advantages of independently controllable four-wheel torque, high energy utilization rate, and fast motor response speed, which greatly reduces the curb weight of the vehicle and simplifies the structure of the vehicle, making it an expert at home and abroad research hotspots. However, the in-wheel motor independently drives the electric vehicle. The in-wheel motor directly drives the vehicle, and the motion states of each wheel are independent of each other; that is, each wheel can be independently driven by wire control, which puts forward higher requirements for the torque distribution control of the entire vehicle. Starting from the driving form of the car, this paper focuses on the design of the torque distribution scheme of the in-wheel motor by experts and scholars in the past, such as the use of genetic algorithm, BP neural network, particle swarm algorithm, and fuzzy control algorithm to distribute the torque of the in-wheel motor, and the research on vehicle economy and stability under torque distribution optimization is reviewed. The future development direction of in-wheel motor torque distribution is prospected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.