Abstract:The accurate estimation of crop biomass during the growing season is very important for crop growth monitoring and yield estimation. The objective of this paper was to explore the potential of hyperspectral and light detection and ranging (LiDAR) data for better estimation of the biomass of maize. First, we investigated the relationship between field-observed biomass with each metric, including vegetation indices (VIs) derived from hyperspectral data and LiDAR-derived metrics. Second, the partial least squares (PLS) regression was used to estimate the biomass of maize using VIs (only) and LiDAR-derived metrics (only), respectively. Third, the fusion of hyperspectral and LiDAR data was evaluated in estimating the biomass of maize. Finally, the biomass estimates were validated by a leave-one-out cross-validation (LOOCV) method. Results indicated that all VIs showed weak correlation with field-observed biomass and the highest correlation occurred when using the red edge-modified simple ratio index (ReMSR). Among all LiDAR-derived metrics, the strongest relationship was observed between coefficient of variation (H CV ) of digital terrain model (DTM) normalized point elevations with field-observed biomass. The combination of VIs through PLS regression could not improve the biomass estimation accuracy of maize due to the high correlation between VIs. In contrast, the H CV combined with H mean performed better than one LiDAR-derived metric alone in biomass estimation (R 2 = 0.835, RMSE = 374.655 g/m 2 , RMSE CV = 393.573 g/m 2 ). Additionally, our findings indicated that the fusion of hyperspectral and LiDAR data can provide better biomass estimates of maize (R 2 = 0.883, RMSE = 321.092 g/m 2 , RMSE CV = 337.653 g/m 2 ) compared with LiDAR or hyperspectral data alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.