Cumulative evidence indicates that osteoblasts and adipocytes share a common mesenchymal precursor and that bone morphogenetic proteins (BMPs) can induce both osteoblast and adipocyte differentiation of this precursor. In the present study, we investigated the roles of BMP receptors in differentiation along these separate lineages using a well-characterized clonal cell line, 2T3, derived from the mouse calvariae. BMP-2 induced 2T3 cells to differentiate into mature osteoblasts or adipocytes depending upon culture conditions. To test the specific roles of the type IA and IB BMP receptor components, truncated and constitutively active type IA and IB BMP receptor cDNAs were stably expressed in these cells. Overexpression of truncated type IB BMP receptor (trBMPR-IB) in 2T3 cells completely blocked BMP-2–induced osteoblast differentiation and mineralized bone matrix formation. Expression of trBMPR-IB also blocked mRNA expression of the osteoblast specific transcription factor, Osf2/ Cbfa1, and the osteoblast differentiation-related genes, alkaline phosphatase (ALP) and osteocalcin (OC). BMP-2–induced ALP activity could be rescued by transfection of wild-type (wt) BMPR-IB into 2T3 clones containing trBMPR-IB. Expression of a constitutively active BMPR-IB (caBMPR-IB) induced formation of mineralized bone matrix by 2T3 cells without addition of BMP-2. In contrast, overexpression of trBMPR-IA blocked adipocyte differentiation and expression of caBMPR-IA induced adipocyte formation in 2T3 cells. Expression of the adipocyte differentiation-related genes, adipsin and PPARγ, correlated with the distinct phenotypic changes found after overexpression of the appropriate mutant receptors. These results demonstrate that type IB and IA BMP receptors transmit different signals to bone-derived mesenchymal progenitors and play critical roles in both the specification and differentiation of osteoblasts and adipocytes.
BACKGROUND: Extranodal natural killer/T-cell lymphoma (ENKTL), nasal-type, is a distinct entity of lymphoid tissue. ENKTL is sensitive to radiotherapy (RT), but the prognosis is poorer than for other types of early lymphoma. The treatment schedule is controversial. METHODS: A phase 2 study was conducted of ''sandwich'' protocols, with earlier RT after an initial 2 to 3 cycles of LVP (L-asparaginase, vincristine, and prednisone), followed by further ''consolidation'' cycles. Patients aged 18 years and older who had previously untreated ENKTL and localized lesions in the upper aerodigestive tract were enrolled. The primary endpoints were objective response rate and complete remission rate. The secondary endpoints were 2-year overall survival, 2-year progression-free survival, and toxicity. This study is registered with www.Chictr.org, number ChicTR-TNC-00000394, and is ongoing for long-term follow-up. RESULTS: Twenty-six patients completed total therapy, which resulted in 88.5% response that included 21 patients (80.8%) with complete response (CR) and 2 patients (7.7%) with partial response. Three (11.5%) of 26 patients progressed during therapy. With a median follow-up of 27 months (range, 4-35 months), the 2-year overall survival was 88.5%, and the 2-year progression-free survival was 80.6%. Patients with CR had better prognosis than patients without CR. Only 2 patients (7.7%) experienced grade 3 leukocytopenia. No grade 4 toxicity or treatment-related deaths were observed. CONCLUSIONS: The research showed that the ''sandwich'' protocol of LVP combined with RT was a safe and effective treatment for localized nasal natural killer/T-cell lymphoma, and the results warrant further investigation into this protocol. Cancer 2012;118:3294-
The pluripotent mesenchymal stem cells give rise to osteoblasts, adipocytes, chondrocytes, and myoblasts. The differentiation of these stem cells into each of the mature functional cells may be controlled by a distinctive master gene(s) and is associated with temporal and spatial expression of diverse genes. Identification of genes that are expressed during the differentiation of the mesenchymal cells to osteoblasts is, therefore, important to obtain insights into the molecular mechanisms of osteogenesis. The murine undifferentiated mesenchymal cell 3T3-F442A, when treated with the bone morphogenetic protein 2 (BMP-2), a well-characterized inducer of mesenchymal cell differentiation, exhibited both osteoblastic and adipocytic differentiation. Using the SAGE (serial analysis of gene expression) technique, which has been shown to enable quantitative analysis of large numbers of genes in a simple and quick manner, we obtained 1600 sequence tags representing 2107 individual nucleotide sequences from control and BMP-2-treated 3T3-F442A cells, respectively. By comparing the frequency of tag occurrence, we found profiles of up- or downregulated genes associated with osteoblast or adipocyte phenotype such as type I collagen, osteonectin and OSF-2, or C/EBPbeta, aP2, fatty acid synthase, and lipoprotein lipase, respectively, in BMP-2-treated 3T3-F442A cells. Our data show that BMP-2 induces not only osteoblastic but also adipocytic differentiation in the 3T3-F442A cells. They also show that the 3T3-F442A cells have bipotentials of differentiating toward osteoblasts and adipocytes. The results, therefore, might explain the inverse correlation between trabecular bone volume and fat volume in the bone marrow cavity. The results also suggest that the SAGE may be a useful technique that allows us a fast and efficient way to generate global and local views of gene expression associated with cellular differentiation of the mesenchymal stem cells.
Bone morphogenetic proteins are potent osteotropic agents that induce osteoblast differentiation and bone formation. The signal transduction of bone morphogenetic proteins has recently been discovered to involve Smad proteins. Smad1 is an essential intracellular component that is specifically phosphorylated by bone morphogenetic protein receptors and translocated into the nucleus upon ligand stimulation. Previously, we have reported that Smad1 activates osteopontin gene expression in response to bone morphogenetic protein simulation through an interaction with a homeodomain transcription factor, Hoxc-8. In the present study, the interaction domains between the two proteins were characterized by deletional analysis in both yeast two-hybrid and gel shift assays. Two regions within the aminoterminal 87 amino acid residues of Smad1 were mapped to interact with Hoxc-8, one of which binds to the homeodomain. Overexpression of recombinant cDNAs encoding the Hoxc-8 interaction domains of Smad1 effectively activated osteopontin gene transcription in transient transfection assays. Furthermore, stable expression of these Smad1 fragments in 2T3 osteoblast precursor cells stimulated osteoblast differentiation-related gene expression and led to mineralized bone matrix formation. Our data suggest that the interaction of amino-terminal Smad1 with Hoxc-8 mimics bone morphogenetic protein signaling and is sufficient to induce osteoblast differentiation and bone cell formation.
Bisphosphonates are a class of synthetic pyrophosphate analogues. Some are known to be potent inhibitors of osteoclast-mediated bone resorption in vivo, but their mechanisms of action are unclear. The order of potency of bisphosphonates as inhibitors of bone resorption closely matches the order of potency as inhibitors of growth of amoebae of the slime mould Dictyostelium discoideum, indicating that bisphosphonates may have a mechanism of action that is similar in both osteoclasts and Dictyostelium. Methylenebisphosphonate and several halogenated derivatives, which have low potency as antiresorptive agents and as growth inhibitors of Dictyostelium, are metabolized intracellularly by Dictyostelium amoebae into methylene-containing adenine nucleotides. We have used a combination of n.m.r. and f.p.l.c. analysis to determine whether incorporation into nucleotides is a feature of other bisphosphonates, especially those that are potent antiresorptive agents. Only bisphosphonates with short side chains or of low potency are incorporated into adenine nucleotides, whereas those with long side chains or of high potency are not metabolized. Bisphosphonate metabolism in cell-free extracts of Dictyostelium was accompanied by inhibition of aminoacylation of tRNA by several aminoacyl-tRNA synthetases. These enzymes were barely affected by the bisphosphonates that were not metabolized. The results indicate that some bisphosphonates are not metabolically inert analogues of pyrophosphate and appear to be metabolized by aminoacyl-tRNA synthetases. The cellular effects of some bisphosphonates may be the result of their incorporation into adenine nucleotides or inhibition of aminoacyl-tRNA synthetases, although the potent bisphosphonates appear to act by a different mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.