Recently air pollution is seriously threatening the health of millions of people in China. The multiple sulfur isotopic composition of sulfate in PM samples collected in Beijing is used to better constrain potential sources and formation processes of sulfate aerosol. The ΔS values of sulfate in PM show a pronounced seasonality with positive values in spring, summer and autumn and negative values in winter. Positive ΔS anomalies are interpreted to result from SO photolysis with self-shielding, and may reflect air mass transport between the troposphere and the stratosphere. The negative ΔS signature (-0.300‰ < ΔS < 0‰) in winter is possibly related to incomplete combustion of coal in residential stoves during the heating season, implying that sulfur dioxide released from residential stoves in more rural areas is an important contributor to atmospheric sulfate. However, negative ΔS anomalies (-0.664‰ < ΔS ← 0.300‰) in winter and positive ΔS anomalies (0.300‰ < ΔS < 0.480‰) in spring, summer, and autumn suggest sulfur isotopic equilibrium on an annual time frame, which may provide an implication for the absence of mass-independent fractionation of sulfur isotopes (S-MIF) in younger sediments. Results obtained here reveal that reducing the usage of coal and improving the heating system in rural areas will be important for efficiently decreasing the emissions of sulfur in China and beyond.
Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.