At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on HSi(111), versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 hours in ambient, followed by a ~10 3 decrease in FET current on/off ratio and mobility after 48 hours. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ~10 3 and mobilities of ~100 cm 2 V -1 s -1 for over two weeks in ambient. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications. On increased ambient exposure, the bubble density eventually decreases, evolving into wider and taller bubbles. These bubbles occur in BP, regardless of flake thickness (Fig. S2). In Fig. 2, we therefore use X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy to assess whether chemical modifications, such as the formation of additional chemical bonds or a change in oxidation state, occur in BP upon ambient exposure. Fig. 2A shows P 2p core level XPS spectra of as-exfoliated BP flakes on SiO2 for 0 hrs, 13 hrs, 1, day, 2 days, and 3 days, respectively, of ambient exposure. All spectra are calibrated to the binding energy of adventitious carbon (284.8 eV), and electrostatic charging is compensated using an Ar + flood gun (see Supporting Information for details). At 0 hrs of ambient exposure (black spectrum in Fig. 2A), the exfoliated BP exhibits a single spin-orbit split doublet at ~130 eV, consistent with previous XPS measurements on BP bulk crystals. 27, 28 Note that these spectra do not match those for red phosphorus (~129.8 eV), white phosphorus, or amorphous P-H. 27 A broad, s photoelectronSi satellite from the substrate 300 nm SiO2 appears at ~126.5 eV. After 13 hrs of ambient exposure (maroon spectrum), the full-width at half-maximum (FWHM) for the BP increases, characteristic of some loss of long range order. After 1, 2, and 3 days in ambient (green, navy, and gray spectra, respectively), an additional doublet appears at ~134 eV. This feature is best assigned to phosphate species, 9, 29 although many oxidized phosphorus compounds exhibit peaks near ~134-135 eV. 30, 31 The la...
Solution dispersions of two-dimensional (2D) black phosphorus (BP) -often referred to asphosphorene -are achieved by solvent exfoliation. These pristine, electronic-grade BP dispersions are produced with anhydrous, organic solvents in a sealed tip ultrasonication system, which circumvents BP degradation that would otherwise occur via solvated O2 or H2O. Among conventional solvents, n-methyl-pyrrolidone (NMP) is found to provide stable, highly concentrated (~0.4 mg/mL) BP dispersions. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy show that the structure and chemistry of solvent-exfoliated BP nanosheets are comparable to mechanically exfoliated BP flakes. Additionally, residual NMP from the liquidphase processing suppresses the rate of BP oxidation in ambient conditions. Solvent-exfoliated BP nanosheet field-effect transistors (FETs) exhibit ambipolar behavior with current on/off ratios and mobilities up to ~10 4 and ~50 cm 2 V -1 s -1 , respectively. Overall, this study shows that stable, highly concentrated, electronic-grade 2D BP dispersions can be realized by scalable solvent exfoliation, thereby presenting opportunities for large-area, high-performance BP device applications.KEYWORDS: phosphorene, liquid-phase, anhydrous, organic solvent, centrifugation, degradation, field-effect transistor 2 Black phosphorus (BP), 1,2 a layered, anisotropic 3,4 allotrope of phosphorus, is emerging as a successor to other two-dimensional (2D) nanomaterials such as graphene 5,6 and transition metal dichalcogenides (TMDs) 7-9 due to its exceptional electronic properties. Unlike semi-metallic graphene, BP is a semiconductor with a thickness-dependent, direct band gap ranging from ~0.3 eV in the bulk to ~1.5 eV in the monolayer (i.e., phosphorene) limit. [10][11][12][13][14] Mechanically exfoliated 2D BP possesses current on/off ratios 12, 15 of ~10 4 -10 5 and room temperature mobilities up to ~200-1000 cm 2 V -1 s -1 . 4,12,[15][16][17] These desirable electronic properties make 2D BP a promising candidate for high-performance electronic and optoelectronic device applications.Many production methods for 2D nanomaterials have been developed including micromechanical exfoliation, 5,12,[18][19][20][21][22][23][24] Figure S1), which is a conventional dispersant for highly concentrated graphene dispersions. 39,40 Herein, we present a scalable method for preparing pristine 2D BP nanosheets via direct liquid exfoliation in organic solvents. By employing a sealed tip ultrasonication system, BP is exfoliated into anhydrous, oxygen-free solvents, avoiding the known chemical degradation pathways for 2D BP. The structure, chemistry, and stability of these solvent-exfoliated BP nanosheets are quantified through a comprehensive suite of measurements including atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Finally, field-effect tra...
Multimetallic nanoparticles are useful in many fields, yet there are no effective strategies for synthesizing libraries of such structures, in which architectures can be explored in a systematic and site-specific manner. The absence of these capabilities precludes the possibility of comprehensively exploring such systems. We present systematic studies of individual polyelemental particle systems, in which composition and size can be independently controlled and structure formation (alloy versus phase-separated state) can be understood. We made libraries consisting of every combination of five metallic elements (Au, Ag, Co, Cu, and Ni) through polymer nanoreactor-mediated synthesis. Important insight into the factors that lead to alloy formation and phase segregation at the nanoscale were obtained, and routes to libraries of nanostructures that cannot be made by conventional methods were developed.
With a semiconducting band gap and high charge carrier mobility, two-dimensional (2D) black phosphorus (BP)—often referred to as phosphorene—holds significant promise for next generation electronics and optoelectronics. However, as a 2D material, it possesses a higher surface area to volume ratio than bulk BP, suggesting that its chemical and thermal stability will be modified. Herein, an atomic-scale microscopic and spectroscopic study is performed to characterize the thermal degradation of mechanically exfoliated 2D BP. From in situ scanning/transmission electron microscopy, decomposition of 2D BP is observed to occur at ∼400 °C in vacuum, in contrast to the 550 °C bulk BP sublimation temperature. This decomposition initiates via eye-shaped cracks along the [001] direction and then continues until only a thin, amorphous red phosphorus like skeleton remains. In situ electron energy loss spectroscopy, energy-dispersive X-ray spectroscopy, and energy-loss near-edge structure changes provide quantitative insight into this chemical transformation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.