Premature ovarian failure (POF) results from a number of disorders. The POF model is primarily based on chemotherapeutic injury, and hence is not suitable for assessing the effects of chronic stress on ovarian function. Therefore, improved animal models are required to analyze the effects of chronic stress on ovarian reserve. The feasibility of the chronic unpredictable mild stress (CUMS) method for establishing a model of POF was examined. The depressive behavior exhibited by rats was evaluated with the open field and sucrose preference tests. Vaginal smears were obtained for assessment of the estrous cycle. The ovarian reserve of the animals was evaluated using the estrous cycle, ovarian histology and serum levels of gonadotropin releasing hormone (GnRH), follicle‑stimulating hormone (FSH), estradiol (E2), and anti‑Müllerian hormone (AMH). Compared with the control group, body weight, time spent in the center, horizontal movement, vertical frequency, consumption of sucrose, sucrose preference, number of small follicles from the rats, and serum E2, AMH and GnRH levels were significantly decreased in the CUMS group (all P<0.05). However, the estrous cycle was prolonged significantly (P<0.05) and serum FSH levels were increased significantly (P<0.01). These results suggested that the CUMS model rats exhibited depression‑like behaviors. CUMS may induce psychological stress and decrease ovarian reserve in female rats. Thus, the CUMS model may be used to assess the effects of chronic stress on female reproductive function.
Objective: To investigate the effects of body mass index (BMI) on the outcomes of in vitro fertilization (IVF) in Chinese patients with polycystic ovary syndrome (PCOS). Methods: In the retrospective cohort study, a total of 1074 patients with PCOS undergoing IVF between April 2010 and May 2017 in two reproductive medicine centers, respectively in eastern China (Women'
Transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into spinal cord injury (SCI) may alleviate neuropathic pain and promote functional recovery. The underlying mechanism likely involves activation of glial cells and regulation of inflammatory factors but requires further validation. SCI was induced in 16 ICR mice using an SCI compression model, followed by injection of lentiviral vector-mediated green fluorescent protein- (GFP-) labeled hUC-MSCs 1 week later. Behavioral tests, histological evaluation, and inflammatory factor detection were performed in the treatment (SCI+hUC-MSCs) and model (SCI) groups. Histological evaluation revealed GFP expression in the spinal cord tissue of the treatment group, implying that the injected MSCs successfully migrated to the SCI. The Basso, Beattie, and Bresnahan (BBB) scores showed that motor function gradually recovered over time in both groups, but recovery speed was significantly higher in the treatment group than in the model group. The pain threshold in mice decreased after SCI but gradually increased over time owing to the self-repair function of the body. The corresponding pain threshold of the treatment group was significantly higher than that of the model group, indicating the therapeutic and analgesic effects of hUC-MSCs. Expression of IL-6 and TNF-α in the spinal cord tissue of the treated group decreased, whereas glial cell line-derived neurotrophic factor (GDNF) expression along with ED1 expression increased compared with those in the model group, suggesting that SCI activated ED1 inflammatory macrophages/microglia, which were subsequently reduced by hUC-MSC transplantation. hUC-MSCs are speculated to enhance the repair of the injured spinal cord tissue and exert an analgesic effect by reducing the secretion of inflammatory factors IL-6 and TNF-α and upregulating the expression of GDNF.
Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.